Experimental Tasks: APhO 2022

Academic Committee: Chandan Ralekar, Siddhant Mukherjee, Siddharth Tiwary, Charudutt Kadolkar, Bipul Pal, Manoj Harbola, Mamatha Maddur, Praveen Pathak Acknowledgement: Chinmay Haritas, Shirish Pathare

$$
\text { APhO } 2022
$$

EQ1: Magnetic Black box

Based on making use of various sensors available on a smartphone.

Motivation

Hall effect based magnetic sensor to detect the magnetic field.

Experiment

Blackbox (magnet in a conducting pipe)

To identify different sections of the pipe with the help of a smartphone.

Theoretical background

The axial magnetic field B_{x} of a point dipole (dipole moment M) at the distance x

$$
B_{x}=\frac{\mu_{0}}{2 \pi} \frac{M}{x^{3}}
$$

When the magnet is moving with a constant non-relativistic velocity

$$
\begin{gathered}
B_{x}(t)=\frac{\mu_{0}}{2 \pi} \frac{M}{(v t)^{3}} \\
\left(\frac{\mu_{0} M}{2 \pi B_{x}(t)}\right)^{1 / 3}=v t
\end{gathered}
$$

Three parts of the experiment:

- Find the location of the magnetometer in the smartphone.
- Determine the dipole moment M.
- Determine v of the magnet.

Simulation

Intergrid spacing: 1 cm
$\mathrm{B}_{\mathrm{w}}:-493.2 \mu \mathrm{~T}$
$\mathrm{B}_{1}:-481.46 \mu \mathrm{~T}$
Rotate mobile:

Rotate magnet:

Rotate scale:

Graph start time:
0

Graph end time:
120

START MEASUREMENT

RESET GRAPH

DROP
RESET POSITIONS

1. Find the location of the magnetometer

2. Dipole moment of the magnet

$$
B_{w}=\frac{\mu_{0}}{2 \pi} \frac{M}{x^{3}}
$$

3. Identify sections of the pipe

When the magnet is dropped in a non magnetic conducting pipe such as aluminium or copper; $m \ddot{y}=m g-k \dot{y}$

$\mathrm{B}_{\mathrm{w}} \& \mathrm{~B}_{\mathrm{l}}$ vs t graph

CD:Copper

Length of each section

Identify the entry and exit time stamps in the data for each section and use the obtained velocities to calculate the section lengths.

EQ2: Accoustic Black box

Doppler effect in waves and an attempt to simulate acoustically the light waves emitted from the rotating planets.

Question

Sound source starts moving at A and emits frequency f_{0}. S is the position of the source at later time t.
You are given a detector D which you can place or move in the $x-y$ plane.
Find $f_{0}, \omega, R, v_{s}, \beta$, coordinates of A and C.

EQ2: Acoustic black box

Detector's velocity: $v_{D} \quad$ Vector $\overrightarrow{D S}: \hat{n} \quad$ Source's net velocity: v_{T} Frequency detected by the detector, when S is moving away (or approaching) from D

$$
f\left(t^{\prime}\right)=f_{0} \frac{c-\vec{v}_{\mathrm{D}} \cdot \hat{n}(t)}{c \pm \vec{v}_{\mathrm{T}} \cdot \hat{n}(t)}
$$

At large distance (or time)

Simulation

Asymptotic limit

Detector position $r_{\mathrm{D}}=10000 \mathrm{~m}, \theta=35^{\circ}$

$$
\frac{f_{\text {max }}+f_{\text {min }}}{f_{\text {max }}-f_{\text {min }}} \frac{c-v_{s}}{\omega R}
$$

$$
\Delta t=\frac{2 \pi}{\omega}\left(1+\frac{v_{s}}{c}\right)
$$

$$
\frac{f_{\text {max }}+f_{\text {min }}}{f_{\text {max }}-f_{\text {min }}}=\frac{c+v_{s}}{\omega R}
$$

Above three equations yield f_{0}, ω, R, f_{0} and v_{s}.

Source's initial coordinates - Triangulation

Detector Location $\left(r_{\mathrm{D}}, \theta\right)$	First signal received (s)
$(500,0)$	1.535
$(0,500)$	1.273
$(0,0)$	1.979

Summary

- How to setup an experiment.
- Observational and experimental skills, visualization, data interpretation and analytical skills.

