SOLUTION

A. Understanding of magnetic fields ($\mathbf{1 . 0}$ point)

1. Understanding of magnetic field created by a circular coil

A. 1	$k=6.28 \times 10^{-3} \mathrm{mT} / \mathrm{mA}$	0.5 pt

2. Understanding of the Earth's magnetic field

A. 2	$B_{\beta}=B_{\mathrm{h}} \cos \beta$	0.5 pt

B. Investigation of the GMR effect using a GMR magnetic sensor (7 points)
2. Determination of resistance of GMR elements
a. Resistance of the elements at $B=0$.

| B. 1 | Diagrams of the experiment and the expressions for calculating the
 resistance of each element a, b, c and d.
 a. Short circuit pins 8 and 4. | |
| :--- | :--- | :--- | :--- |
| $R_{5,84}=m ; R_{1,84}=n$ | | |
| $\frac{1}{m}=\frac{1}{a}+\frac{1}{b}$ | (1) | |
| $\frac{1}{n}=\frac{1}{c}+\frac{1}{d}$ | (2) | |

b. Connect pins 8 and 4 to a battery.

$$
\begin{align*}
& \frac{U_{8,5}}{U_{5,4}}=p ; \frac{U_{8,1}}{U_{1,4}}=q \\
& \frac{a}{b}=p \tag{3}\\
& \frac{d}{c}=q \tag{4}
\end{align*}
$$

Solve the system of equations (1), (2), (3) and (4). Obtain:
$a=m(p+1) ; b=m\left(1+\frac{1}{p}\right)$

	$c=n\left(1+\frac{1}{q}\right) ; d=n(q+1)$	
B.2	For $B=0:$ $a=4960 \Omega ; b=4870 \Omega ; c=4950 \Omega ; d=4970 \Omega$	1.25 pt

b. Resistance of the elements at maximum external magnetic field

B.3	$a=4320 \Omega ; b=4870 \Omega ; c=4310 \Omega ; d=4970 \Omega$	0.5 pt

c. Properties of the elements

B.4	Elements sensitive to the magnetic field are: a, c	0.25 pt

2. Characteristics of a GMR element

B.5	The name of the chosen element: a
	Diagrams of the experiment and the expressions for calculating
	$\delta(B)$.
	1. Method 1:
	The same as used in B.1 with different values of the current I in the circular coil.

2. Method 2:

Connect the sensor to the battery according to the diagram, forming a bridge. The GMR element under consideration is a.

If at $I=0$ the bridge is balanced, then $\Delta U=0$.
Set the current I in the coil, the resistance of a becomes $R+\Delta R$,
 then $\quad \Delta U \neq 0 . \quad$ Because $\quad \Delta U=\frac{E \cdot R}{R+R+\Delta R}-\frac{E}{2}, \quad$ then $\delta(B)=\frac{\Delta R}{R} \approx-\frac{\Delta U}{E / 4}$.
If at $I=0$, the bridge is unbalanced and the initial voltage is ΔU_{0}, then $\frac{\Delta R}{R}=-\frac{\Delta U-\Delta U_{0}}{E / 4}$ and $\delta(B)=\frac{\Delta R}{R} \approx-\frac{\Delta U-\Delta U_{0}}{E / 4}$
The voltages are measured relatively to the middle point of the battery.

| The maximum value of $\Delta R / R$ is about 10%. The error in
 determining it by using above approximations is less than 1% and
 can be accepted. | |
| :--- | :--- | :--- |

B. 6	Table of $\delta(B)$ corresponding to the values I and B. $E=6300 \mathrm{mV}$					1.25 pt
I (mA)	$B(\mathrm{mT})$	$\Delta U(\mathrm{mV})$	$\Delta U-\Delta U_{0}$	$\delta(B)$		
0						
10	0.0628	-25.8	0	0		
20	0.126	-21	4.8	-0.00305		
45	0.283	-2.1	10.1	-0.00641		
67	0.421	11.1	23.7	-0.01504		
87	0.546	24.5	36.9	-0.02343		
107	0.672	38.1	50.3	-0.03193		
129	0.810	54	639	-0.04057		
156	0.980	74	79.8	-0.05067		
186	1.168	96	99.8	-0.06336		
215	1.350	117.3	121.8	-0.07733		
240	1.507	134.5	143.1	-0.09085		
268	1.683	152.6	160.3	-0.10177		
303	1.903	170.6	178.4	-0.11326		
330	2.072	179.6	196.4	-0.12469		
354	2.223	184.1	205.4	-0.13041		
384	2.411	186.2	209.9	-0.13326		
405	2.543	186.7	212	-0.13460		
436	2.738	187.1	212.5	-0.13492		
469	2.945	187.2	212.9	-0.13517		
		213	-0.13523			

B. 7	Graph 1- Graph of the relative change of resistance	0.5 pt

B. $\mathbf{8}$	The average slope $\alpha=\frac{\Delta \delta(B)}{\Delta B}$ $\alpha=-0.067 \mathrm{mT}^{-1}$	0.25 pts
B.9 the curve $\delta(B)$	The GMR coefficient $\delta=\frac{\Delta R_{\max }}{R(0)}=13.5 \%$	0.25 pts
B.10	The value of the resistances r and R of the GMR element: $r=R_{0}-\sqrt{R_{0}\left(R_{0}-R_{\mathrm{B}}\right)} ; R=R_{0}+\sqrt{R_{0}\left(R_{0}-R_{\mathrm{B}}\right)}$ Choose element a in B .2 and B .3, then: $r=3180 \Omega ; R=6740 \Omega ; \gamma=\frac{r}{R}=0.47$	0.75 pts

C. Study of GMR magnetic sensor (6 points)

1. Characteristics of sensor output signal

C. 2 Graph 2-Graph $S(B)$ of the output signal S as a function of the 1.0 pts applied magnetic field B.

Graph 2

C.3	1. Region of saturation in the $\operatorname{curve} S(B): \mathrm{S}$ 2. Region of linearity in the curve $S(B): \mathrm{L}$ $m=2.0 \times 10^{2} \mathrm{mV} / \mathrm{mT}$	0.5 pts
C.4	The coercive field is $B_{\mathrm{c}}=0.10 \mathrm{mT}$	0.5 pts

2. Dependence of output signal on the voltage

C. 5	Table with the values of S corresponding to the values of E.	0.25 pts

$E(\mathrm{~V})$	$S(\mathrm{mV})$
0	0

1.51	91.5
3.1	183
4.6	274
6.25	365

C. 7	$\|S\|=\frac{E}{2} \cdot\|\alpha\| \cdot B$	0.5 pt

3. Study of effects of a flux concentrator

\begin{tabular}{|c|c|c|}
\hline C. 8 \& \begin{tabular}{l}
1. The magnetic field used in this experiment. \\
Put a cross in the appropriate box \\
2. Diagrams of the experiment and expressions to determine the value of \(n\). \\
1. The sensor on the round plate in the horizontal plane. \\
2. With no flux concentrator \\
a. Orient the sensor perpendicular to the South-North direction. Note the value \(S_{1}\). \\
b. Rotate the sensor along the South-North direction. Note the value \(S_{2}\). \\
c. \(\Delta S_{0}=S_{2}-S_{1} ; B_{0}=\left|\Delta S_{0}\right| / m\). \\
3. With flux concentrator \\
For each value of \(L_{1}\), do the same, to obtain \(B=|\Delta S| / m\).
\end{tabular} \& 0.25 pt

0.75 pt

\hline
\end{tabular}

C.9	Table to find B / B_{0} for different values of $L_{1} . B / B_{0}=\Delta S / \Delta S_{0}$ $S_{1}=17 \mathrm{mV} ; \Delta S_{0}=21.2-17=4.2 \mathrm{mV}$.	0.5 pt

$L_{1}(\mathrm{~mm})$	$S_{2}(\mathrm{mV})$	$1 / L_{1}\left(\mathrm{~mm}^{-1}\right)$	$\Delta S=S_{2}-S_{1}$	B / B_{0}
5	33.2	0.200	16.2	3.86
6	31.2	0.167	14.2	3.38
7	30.2	0.143	13.2	3.14

8	28.6	0.125	11.6	2.76
9	27.7	0.111	10.7	2.55
10	26.8	0.100	9.8	2.33
11	26.4	0.0909	9.4	2.24
13	25.4	0.0769	8.4	2.00
15	24.6	0.0667	7.6	1.81
∞	21.2	0.0000	4.2	1.00

C.10	Graph $4-$ Graph of B / B_{0} as a function of $1 / L_{1}$.	0.5 pt
	Use the function $\frac{B}{B_{0}}=n L_{2} \cdot \frac{1}{L_{1}}+1$. Find $a=n L_{2}=14.1$.	
	Obtain $n=\frac{a}{L_{2}}=\frac{14.1}{25}=0.56$.	

D. Applications of GMR magnetic sensors (6 points)

1. Measurements of the Earth's magnetic field

a. Magnitude of the horizontal component of the Earth's magnetic field

D. 1	Diagrams of the experiment and expressions for calculating B_{h}. 1. The sensor on the round plate in the horizontal plane. Carry out the biasing. 2. Method 1 a. Set $\alpha=0$ - the sensor perpendicular to the direction SouthNorth. b. Rotate the sensor holder, measure $S=f(\alpha)$ c. Fit the curve S to a sine function $S=a \boldsymbol{\operatorname { s i n }} \alpha$. d. $B_{\mathrm{h}}=a / m$	0.5 pt

| 3. Method 2 |
| :--- | :--- |
| a. Orient the sensor along the Earth's magnetic field. Find the
 direction with the maximum (or minimum) value of S. Note this
 value S_{1}
 b. Rotate the sensor holder by about 180°. Find the direction with
 the minimum (or maximum) value of S. Note this value S_{2}
 $B_{\mathrm{h}}=\frac{\left\|S_{1}-S_{2}\right\|}{2 m}$ |

D. 2	$B_{\mathrm{h}}=0.035 \mathrm{mT}$.	0.25 pts

b. Magnitude of the Earth's magnetic field and magnetic inclination

D. 3	Diagrams of the experiment and expressions for calculating $B_{\text {Earth }}$ and θ. 1. The sensor on the round plate in the vertical plane containing the South-North direction. Carry out the biasing. 2. Method 1	0.75 pts

a. Orient the sensor along the Earth's magnetic field. Find the direction with the maximum (or minimum) value of S. Note this value S_{1} and the angle α_{1} between the sensor direction and the horizontal.
b. Rotate the sensor holder by about 180°. Find the direction with the minimum (or maximum) value of S. Note this value S_{2} and the angle α_{2} between the sensor direction and the horizontal.
c. Orient the sensor in the direction midway between α_{1} and α_{2} with the angle $\alpha_{3}=\alpha_{2}+90^{\circ}$. Note the value S_{3}.
d. Starting from α_{3}, rotate the sensor holder, take the values of S corresponding to values of α. Measure $S=f(\alpha)$.
e. $S-S_{3}=a \sin \alpha$. Obtain a from fitting.
f. $B_{\text {Earth }}=a / m$
g. $\theta=\operatorname{Arccos} \frac{B_{\mathrm{h}}}{B_{\text {Earth }}}$
3. Method 2

Orient the sensor along the Earth's magnetic field. Find the direction with the maximum (or minimum) value of S. The angle θ between the sensor direction and the horizontal is the magnetic inclination.

From the obtained $\theta, B_{\text {Earth }}=B_{\mathrm{h}} / \cos \theta$.
This method may have systematic errors due to the relative misalignment of the sensor to the sensor holder. To eliminate this error, rotate the round plate together with the sensor holder by 180° about a horizontal axis along the South-North direction. Repeat the measurement. The magnetic inclination is the mean value of the

	two obtained angles.	
D4	$B_{\text {Earth }}=0.041 \mathrm{mT}$	0.5 pts
	$\theta=31^{\circ}$	

2. DC wattmeter

| D. 5 | Diagram of the wattmeter circuit together with the load and the
 multimeters. | 0.5 pt |
| :--- | :--- | :--- | :--- |

D.6	Table with the values of the sensor output signal S corresponding to the values of I and U, and of $P=I \cdot U$.	0.75

$I(\mathrm{~A})$	$U(\mathrm{~V})$	$P(\mathrm{~W})$	$S(\mathrm{mV})$
0.30	2.64	0.992	18.3
0.35	3.9	1.365	42
0.40	5.37	2.15	74.3
0.45	6.94	3.12	112.4
0.50	8.67	4.34	162.4
0.543	10.29	5.59	215.4
0.20	0.89	0.178	4.9
0.25	1.53	0.382	11.5
0.50	1.3	0.65	25.8
0.60	2.13	1.28	50.7
0.70	3.1	2.17	88.1
0.80	4.1	3.28	137
0.97	6.11	5.92	253
0.30	3.13	0.939	31.4
0.442	7.74	3.42	128

\section*{| D. 7 | Graph 5 - Calibration curve of the wattmeter $P=f(S)$. | 0.5 pt |
| :--- | :--- | :--- |}

Graph 5

D. 8	The function: $P=\kappa S$ The coeficient: $\kappa=0.026 \mathrm{~W} / \mathrm{mV}$	0.25 pt

b. Detection of buried electrical circuits

D. 9		2.0 pt

