

Dark Matter

A. Cluster of Galaxies

Answer	Marks
Potential energy for a system of a spherical object with mass $M(r) = \frac{4}{3}\pi r^3 \rho$ and a test particle with mass dm at a distance r is given by	0.2 pts
$dU = -G\frac{M(r)}{r}dm$	
Thus for a sphere of radius R $U = -\int_0^R G \frac{M(r)}{r} dm = -\int_0^R G \frac{4\pi r^3 \rho}{3r} 4\pi r^2 \rho dr = -\frac{16}{3} G\pi^2 \rho^2 \int_0^R r^4 dr$ $= -\frac{16}{15} G\pi^2 \rho^2 R^5$	0.6 pts
Then using the total mass of the system $M = \frac{4}{3}\pi R^3 \rho$ we have $U = -\frac{3}{5}\frac{GM^2}{R}$	0.2 pts
Total	1.0 pts

Answer	Marks
Using the Doppler Effect, $f_i = f_0 \frac{1}{1+\beta} \approx f_0 (1-\beta) ,$	
where $\beta = v/c$ and $v << c$. Thus the <i>i</i> -th galaxy moving away (radial) speed is	
$V_{ri} = -\frac{f_i - f_0}{f_0}c$ Alternative without approximation: $f_i = f_0 \frac{1}{1+\beta}$ $V_{ri} = c \left(\frac{f_0}{f_i} - 1\right)$	0.2 pts
All the galaxies in the galaxy cluster will be moving away together due to the cosmological expansion. Thus the average moving away speed of the N galaxies in the cluster is $V_{cr} = -\frac{c}{Nf_0}\sum_{i=1}^N \left(f_i - f_0\right) = -\frac{c}{N}\sum_{i=1}^N \left(\frac{f_i}{f_0} - 1\right).$ Alternative without approximation: $V_{cr} = \frac{cf_0}{N}\sum_{i=1}^N \left(\frac{1}{f_i} - \frac{1}{f_0}\right) = \frac{c}{N}\sum_{i=1}^N \left(\frac{f_0}{f_i} - 1\right)$	0.3 pts
Total	0.5 pts

Answer	Marks
The galaxy moving away speed V_i , in part A.2, is only one component of the	
three component of the galaxy velocity. Thus the average square speed of each galaxy with respect to the center of the cluster is	
$\frac{1}{N} \sum_{i=1}^{N} (\vec{V}_i - \vec{V}_c)^2 = \frac{1}{N} \sum_{i=1}^{N} (V_{xi} - V_{xc})^2 + (V_{yi} - V_{yc})^2 + (V_{zi} - V_{zc})^2$	0.5 pts
Due to isotropic assumption	
$\frac{1}{N} \sum_{i=1}^{N} (\vec{V}_i - \vec{V}_c)^2 = \frac{3}{N} \sum_{i=1}^{N} (V_{ri} - V_{cr})^2$	
And thus the root mean square of the galaxy speed with respect to the cluster center is 16 - 24 JULY 2017	
$v_{rms} = \sqrt{\frac{3}{N} \sum_{i=1}^{N} (V_{ri} - V_{rc})^{2}} = \sqrt{\frac{3}{N} \sum_{i=1}^{N} (V_{ri}^{2} - 2V_{cr}V_{ri} + V_{cr}^{2})} = \sqrt{\frac{3}{N} \left(\sum_{i=1}^{N} V_{ri}^{2}\right) - 3V_{cr}^{2}}$	
$v_{rms} = c\sqrt{3}\sqrt{\left(\frac{1}{N}\sum_{i=1}^{N}\left(\frac{f_{i}}{f_{0}}-1\right)^{2}\right) - \left(\frac{1}{N}\sum_{i=1}^{N}\left(\frac{f_{i}}{f_{0}}-1\right)\right)^{2}}$	0.7 pts
$= \frac{c\sqrt{3}}{f_0} \sqrt{\left(\frac{1}{N} \sum_{i=1}^{N} \left(f_i^2 - 2f_i f_0 + f_0^2\right)\right) - \left(\left(\frac{1}{N} \sum_{i=1}^{N} f_i\right)^2 - 2\frac{f_0}{N} \sum_{i=1}^{N} f_i + f_0^2\right)}$	
$= \frac{c\sqrt{3}}{f_0 N} \sqrt{\left(N \sum_{i=1}^N f_i^2\right) - \left(\sum_{i=1}^N f_i\right)^2}$	
Alternative without approximation:	

$v_{rms} = c\sqrt{3}\sqrt{\left(\frac{1}{N}\sum_{i=1}^{N}\left(\frac{f_{0}}{f_{i}}-1\right)^{2}\right) - \left(\frac{1}{N}\sum_{i=1}^{N}\left(\frac{f_{0}}{f_{i}}-1\right)\right)^{2}}$	
$= \frac{c\sqrt{3}}{f_0} \sqrt{\left(\frac{1}{N} \sum_{i=1}^{N} \left(\frac{1}{f_i^2} - 2\frac{1}{f_i} \frac{1}{f_0} + \frac{1}{f_0^2}\right)\right) - \left(\left(\frac{1}{N} \sum_{i=1}^{N} \frac{1}{f_i}\right)^2 - 2\frac{1}{N} \frac{1}{f_0} \sum_{i=1}^{N} \frac{1}{f_i} + \frac{1}{f_0^2}\right)}$	
$= \frac{cf_0\sqrt{3}}{N}\sqrt{\left(N\sum_{i=1}^{N}\left(\frac{1}{f_i}\right)^2\right) - \left(\sum_{i=1}^{N}\frac{1}{f_i}\right)^2}$	
48 TH	
The mean kinetic energy of the galaxies with respect to the center of the cluster	
is YOGYAKARTA- INDONESIA 16 - 24 JULY 2017	
$K_{ave} = \frac{m}{2} \frac{1}{N} \sum_{i=1}^{N} (\vec{V}_i - \vec{V}_c)^2 = \frac{m}{2} v_{rms}^2$	0.3 pts
Total	1.5 pts

Answer	Marks
The time average of $d\Gamma/dt$ vanishes	
$\left\langle \frac{d\Gamma}{dt} \right\rangle_t = 0$	
Now	0.6 pts
$\frac{d\Gamma}{dt} = \frac{d}{dt} \sum_{i} \vec{p}_{i} \cdot \vec{r}_{i} = \sum_{i} \frac{d\vec{p}_{i}}{dt} \cdot \vec{r}_{i} + \sum_{i} \vec{p}_{i} \cdot \frac{d\vec{r}_{i}}{dt}$	
$48^{\frac{1}{11}} \sum_{i} \vec{F}_{i} \cdot \vec{r}_{i} + \sum_{i} m_{i} \vec{v}_{i} \cdot \vec{v}_{i} = \sum_{i} \vec{F}_{i} \cdot \vec{r}_{i} + 2K$	
Where <i>K</i> is the total kinetic energy of the system. Since the gravitational force on <i>i</i> -th particle comes from its interaction with other particles then	
$\sum_{i} \vec{F}_{i} \cdot \vec{r}_{i} = \sum_{i,j \neq i} \vec{F}_{ji} \cdot \vec{r}_{i} = \sum_{i < j} \vec{F}_{ji} \cdot \vec{r}_{i} - \sum_{i > j} \vec{F}_{ij} \cdot \vec{r}_{i} = \sum_{i < j} \vec{F}_{ji} \cdot \vec{r}_{i} - \sum_{i < j} \vec{F}_{ji} \cdot \vec{r}_{j}$	
$= \sum_{i < j} \vec{F}_{ji} \cdot (\vec{r}_i - \vec{r}_j) = -\sum_{i < j} G \frac{m_i m_j}{ \vec{r}_i - \vec{r}_j ^2} \frac{(\vec{r}_i - \vec{r}_j)}{ \vec{r}_i - \vec{r}_j } \cdot (\vec{r}_i - \vec{r}_j) = -\sum_{i < j} G \frac{m_i m_j}{ \vec{r}_i - \vec{r}_j } = U_{\text{tot}}$	
Alternative proof:	
$\sum_{i} \vec{F}_{i} \cdot \vec{r}_{i} = \sum_{i,j \neq i} \vec{F}_{ji} \cdot \vec{r}_{i} = \vec{F}_{21} \cdot \vec{r}_{1} + \vec{F}_{31} \cdot \vec{r}_{1} + \vec{F}_{41} \cdot \vec{r}_{1} + \dots + \vec{F}_{N1} \cdot \vec{r}_{1} +$	0.9 pts
$\vec{F}_{12}.\vec{r}_2 + \vec{F}_{32}.\vec{r}_2 + \vec{F}_{42}.\vec{r}_2 + \dots + \vec{F}_{N2}.\vec{r}_2 + \dots$	
$\vec{F}_{13}.\vec{r}_3 + \vec{F}_{23}.\vec{r}_3 + \vec{F}_{43}.\vec{r}_3 + \dots + \vec{F}_{N3}.\vec{r}_3 + \dots$	
$\vec{F}_{1N} \cdot \vec{r}_N + \vec{F}_{2N} \cdot N_N + \vec{F}_{3N} \cdot \vec{r}_N + \dots + \vec{F}_{NN-1} \cdot \vec{r}_{N-1}$	
Collecting terms and noting that $\vec{F}_{ij} = -\vec{F}_{ji}$ we have	

$\vec{F}_{12}.(\vec{r}_2 - \vec{r}_1) + \vec{F}_{13}.(\vec{r}_3 - \vec{r}_1) + \vec{F}_{14}.(\vec{r}_4 - \vec{r}_1) + \dots + \vec{F}_{23}.(\vec{r}_3 - \vec{r}_2)$	
$+ \vec{F}_{24} \cdot (\vec{r}_4 - \vec{r}_2) + \dots + \vec{F}_{34} \cdot (\vec{r}_4 - \vec{r}_3) + \dots = \sum_{i < j} \vec{F}_{ji} \cdot (\vec{r}_i - \vec{r}_j)$	
$= -\sum_{i < j} G \frac{m_i m_j}{\left \vec{r}_i - \vec{r}_j \right ^2} \frac{\left(\vec{r}_i - \vec{r}_j \right)}{\left \vec{r}_i - \vec{r}_j \right } \cdot \left(\vec{r}_i - \vec{r}_j \right) = -\sum_{i < j} G \frac{m_i m_j}{\left \vec{r}_i - \vec{r}_j \right } = U_{tot}$	
Thus we have	
$\frac{d\Gamma}{dt} = U + 2K$	
And by taking its time average we obtain $\left\langle \frac{d\Gamma}{dt} = U + 2K \right\rangle_t = 0$ and thus	0.2 pts
$\langle K \rangle_t = -\frac{1}{2} \langle U \rangle_t$. Therefore $\gamma = \frac{1}{2}$. YOGYAKARTA- INDONESIA 16 - 24 JULY 2017	
Total	1.7 pts

Solutions/ Marking Scheme

T1

Answer	Marks
Using Virial theorem, and since the dark matter has the same root mean square speed as the galaxy, then we have	
$\left\langle K \right\rangle_{t} = -\frac{1}{2} \left\langle U \right\rangle_{t}$	0.3 pts
$\frac{M}{2}v_{rms}^2 = \frac{1}{2}\frac{3}{5}\frac{GM^2}{R}$	
From which we have	
$M = \frac{5Rv_{rms}^2}{3G}$	0.1 pts
And the dark matter mass is then 16 - 24 JULY 2017	
$M_{dm} = \frac{5Rv_{rms}^2}{3G} - Nm_g$	0.1 pts
Total	0.5 pts

B. Dark Matter in a Galaxy

Answer	Marks
Answer B.1: The gravitational attraction for a particle at a distance r from the center of the sphere comes only from particles inside a spherical volume of radius r . For particle inside the sphere with mass m_s , assuming the particle is orbiting the center of mass in a circular orbit, we have $G\frac{m'(r)m_s}{r^2} = \frac{m_s v_0^2}{r}$	0.3 pts
with $m'(r)$ is the total mass inside a sphere of radius r	
$m'(r) = \frac{4}{3}\pi r^3 m_s n$ $16 - 24 \text{ JULY 2017}$	
Thus we have	0.2 pts
$v(r) = \left(\frac{4\pi Gnm_s}{3}\right)^{1/2} r$	
While for particle outside the sphere, we have	
$v(r) = \left(\frac{4\pi Gnm_s R^3}{3r}\right)^{1/2}$	0.2 pts

Answer	Mar	·ks
The total mass can be inferred from		
$G\frac{m'(R_g)m_s}{R_g^2} = \frac{m_s v_0^2}{R_g}$		
Thus	0.5 p	ots
$m_R = m'(R_g) = \frac{v_0^2 R_g}{G}$		
Tota	I 0.5 p	ots

Answer	Marks
Base on the previous answer in B.1, if the mass of the galaxy comes only from the visible stars, then the galaxy rotation curve should fall proportional to $1/\sqrt{r}$ on the outside at a distance $r > R_g$. But in the figure of problem b) the curve remain constant after $r > R_g$, we can infer from $G\frac{m'(r)m_s}{r^2} = \frac{m_s v_0^2}{r} .$	0.3 pts
to make $v(r)$ constant, then $m'(r)$ should be proportional to r for $r>R_g$, i.e. for $r>R_g$, $m'(r)=Ar$ with A is a constant.	
While for $r < R_g$, to obtain a linear plot proportional to r , then $m'(r)$ should be proportional to r^3 , i.e. $m'(r) = Br^3$.	0.3 pts
Thus for $r < R_g$ we have $m'(r) = \int\limits_0^r \rho_t(r) 4\pi r'^2 dr' = B r^3$ $dm'(r) = \rho_t(r) 4\pi r^2 dr = 3B r^2 dr$ Thus total mass density $\rho_t(r) = \frac{3B}{4\pi}$	0.2 pts
$m_R = \int_0^{R_g} \frac{3B}{4\pi} 4\pi r'^2 dr' = BR_g^3 \text{ or } B = \frac{m_R}{R_g^3} = \frac{v_0^2}{GR_g^2}$ Thus the dark matter mass density $\rho(r) = \frac{3v_0^2}{4\pi GR_g^2} - nm_s$	0.2 pts

While for $r > R_g$ we have

$$m'(r) = \int_0^{R_g} \rho(r') 4\pi r'^2 dr' + \int_{R_g}^r \rho(r') 4\pi r'^2 dr' = Ar$$

$$m'(r) = m_R + \int_{R_g}^{r} \rho(r') 4\pi r'^2 dr' = Ar$$

0.2 pts

$$\int_{R}^{r} \rho(r') 4\pi r'^{2} dr' = Ar - M_{0}$$

$$\rho(r)4\pi r^{2} = A$$
, or $\rho(r) = \frac{A}{4\pi r^{2}}$.

Now to find the constant A.

$$\int_{R}^{r} \frac{A}{4\pi r'^{2}} 4\pi r'^{2} dr' = A(r - R_{g}) = Ar - m_{R}$$

Thus
$$AR_g = m_R$$
 and $A = \frac{v_0^2}{G}$

We can also find A from the following

$$G\frac{m'(r)m_s}{r^2} = G\frac{Arm_s}{r^2} = \frac{m_s v_0^2}{r}$$
, thus $A = \frac{v_0^2}{G}$.

0.3 pts

Thus the dark matter mass density (which is also the total mass density since $n \approx 0$ for $r \geq R_{\rm g}$.

$$\rho(r) = \frac{v_0^2}{4\pi G r^2} \text{ for } r \ge R_g$$

Total | 1.5 pts

C. Interstellar Gas and Dark Matter

Answer	Marks
Consider a very small volume of a disk with area A and thickness Δr , see Fig.1 $\bigvee_{p(r+dr)} p(r) \\ \downarrow_{g(r)} \\ figure 1. \ \text{Hydrostatic equilibrium}$ In hydrostatic equilibrium we have $(P(r)-P(r+\Delta r))A-\rho g(r)A\Delta r=0$	0.3 pts
$\frac{\Delta P}{\Delta r} = -\rho \frac{Gm'(r)}{r^2}$ $\frac{dP}{dr} = -\rho \frac{Gm'(r)}{r^2} = -n(r)m_p \frac{Gm'(r)}{r^2}.$.	0.2 pts
Total	0.5 pts

Solutions/ Marking Scheme

T1

Question C.2

Answer	Marks
Using the ideal gas law $P = n kT$ where $n = N/V$ where n is the number density, we have	
$\frac{dP}{dr} = kT \frac{dn(r)}{dr} + kn(r) \frac{dT}{dr} = -n(r)m_p \frac{Gm'(r)}{r^2}$	
Thus we have	0.5 pts
$m'(r) = -\frac{kT}{Gm_p} \left(\frac{r^2}{n(r)} \frac{dn(r)}{dr} + \frac{r^2}{T(r)} \frac{dT(r)}{dr} \right).$	
Total	0.5 pts

Answer	Marks
If we have isothermal distribution, we have $dT/dr = 0$ and	
$m'(r) = -\frac{kT_0}{Gm_p} \left(\frac{r^2}{n(r)} \frac{dn(r)}{dr} \right)$	0.2 pts
From information about interstellar gas number density, we have	
$\frac{1}{n(r)}\frac{dn(r)}{dr} = -\frac{3r+\beta}{r(r+\beta)}$	
$n(r)$ dr $r(r+\beta)$	
Thus we have	0.2 pts
$m'(r) = \frac{kT_0 r}{Gm_p} \frac{3r + \beta}{(r + \beta)}$	

Mass density of the interstellar gas is	
$\rho_g(r) = \frac{\alpha m_p}{r(\beta + r)^2}$	
Thus	
$m'(r) = \int_{0}^{r} (\rho_{g}(r') + \rho_{dm}(r')) 4\pi r'^{2} dr' = \frac{kT_{0}r}{Gm_{p}} \frac{3r + \beta}{(r + \beta)}$	0.3 pts
$m'(r) = \int_{0}^{r} \left(\frac{\alpha m_{p}}{r'(\beta + r')^{2}} + \rho_{dm}(r') \right) 4\pi r'^{2} dr' = \frac{kT_{0}r}{Gm_{p}} \frac{3r + \beta}{(r + \beta)}$	
48 TH 1 D 1 0 2017	
$\left(\frac{\alpha m_p}{r(\beta + r)^2} + \rho_{dm}(r)\right) 4\pi r^2 = \frac{kT_0}{Gm_p} \frac{3r^2 + 6r\beta + \beta^2}{(r + \beta)^2 L V 2017}$	
$\rho_{dm}(r) = \frac{kT_0}{4\pi Gm_p} \frac{3r^2 + 6r\beta + \beta^2}{(r+\beta)^2 r^2} - \frac{\alpha m_p}{r(\beta+r)^2}$	0.3 pts
Total	1.0 pts