Experiment A Dh

A.1 (0.1 pt)

Part A. Sample X. Spectral measurements

$\varphi(\lambda) =$					
A.2 (1.0 pt)					
φ	θ				

A.4 (0.9 pt)		
$n_X =$		
$D_X =$		

Experiment

Part B. Sample X. Laser measurements

	B.1 $(0.1~\mathrm{pt})$ Write down the wavelength of the chosen laser.
	$\lambda =$
_	
	B.2 (1.0 pt)

	9

Experiment APhO

B.4 (0.2 pt)		
$\theta_1 =$		
$\Delta\theta_1 =$		

B.5 (0.2 pt)			
$\lambda_X =$			

Experiment

B.6 (0.6 pt)	
$\Delta n_X =$	
B.7 (0.3 pt)	
$\theta_2 =$	
B.8 (1.0 pt)	
$p_X =$	
$n_{AAO} =$	
B.9 (0.6 pt)	
$p_1 =$	
$p_2 =$	

Experiment

Part C. Sample Y. Several transmittance minimums

C.1 (0.6 pt)		
$\lambda_1^{sp} =$		
$\lambda_2^{sp} =$		
$\lambda_3^{sp} =$		

 $\mathbf{C.2} \; (0.5 \; \mathrm{pt})$

θ	I_{red}		

C.3 (0.5 pt)	C.3 $(0.5 \mathrm{pt})$				
θ	I_{green}				

Experiment APh APh O

C.4 (0.5 pt)					
θ	I_{blue}				

C.5 $(0.6~{
m pt})$ Fill in the first column with the discovered normal wavelengths λ_Y .

λ_Y	m	t

C.6 (1.0 pt)

Fill in the second column in C.5 table with the corresponding values \it{m} .

Experiment APhO

C.7 (0.2 pt)			
$D_Y =$			

C.8 $(0.6~\mathrm{pt})$ Fill in the third column in C.5 table with the corresponding values t.

Part D. Sample Z. Missed transmittance minimums

D.1 Describe your method with sketches and equations.			

D.1	(1	9	nt)
D. I	L	. 4	DU.

Write down the normal wavelengths λ_Z^n and corresponding integers m. You can provide two variants of latter. Only the best one will be assessed.

λ_Z	m, variant 1	m, variant 2

D.2 (2.0 pt)

Fill integers m in the table of D.1 box in accordance with wavelengths λ_Z . You can provide two sets of numbers. Only the best one will be assessed.

D.3	(0.3)	pt)
-----	-------	-----

$$D_Z =$$

D.4 (1.0 pt)

Write down the wavelengths λ_Z' of missed transmittance minimums and corresponding integers m. You can provide two variants in accordance with answers in D.1-2. Only the best one will be assessed.

λ_Z' , variant 1	m^\prime , variant 1	λ_Z' , variant 2	m^\prime , variant 2

Part E. Samples Y and Z. Internal structure of the period

E.1 $(1.2~\mathrm{pt})$ Name of the sample Y		
E.2 (1.3 pt) Name of the sample Z		

A1-15 English (Official)

