Experiment

Part A. Sample X. Spectral measurements
A. 1 (0.1 pt)
$\varphi(\lambda)=$

A. 2 (1.0 pt)

φ	θ				

Experiment

YAKUTSK 2017 RUSSIA
A. 3 (1.5 pt)

A. 4 (0.9 pt)
$n_{X}=$
$D_{X}=$

Experiment

Part B. Sample X. Laser measurements
B. 1 (0.1 pt)

Write down the wavelength of the chosen laser.
$\lambda=$
B. 2 (1.0 pt)

θ	I_{t}				

Experiment

B. 3 (1.0 pt)

B. 4 (0.2 pt)
$\theta_{1}=$
$\Delta \theta_{1}=$
B. 5 (0.2 pt)
$\lambda_{X}=$

Experiment

\square
B. 7 (0.3 pt)
$\theta_{2}=$
B. 8 (1.0 pt)
$p_{X}=$
$n_{A A O}=$
B. 9 (0.6 pt)
$p_{1}=$
$p_{2}=$

Experiment

Part C. Sample Y. Several transmittance minimums
C. 1 (0.6 pt)
$\lambda_{1}^{s p}=$
$\lambda_{2}^{s p}=$
$\lambda_{3}^{s p}=$
C. 2 (0.5 pt)

θ	$I_{\text {red }}$				

Experiment

C. 3 (0.5 pt)

θ	$I_{\text {green }}$				

C. 4 (0.5 pt)

θ	$I_{\text {blue }}$				

C. 5 (0.6 pt)

Fill in the first column with the discovered normal wavelengths λ_{Y}.

λ_{Y}	m	t

C. 6 (1.0 pt)

Fill in the second column in C. 5 table with the corresponding values m.

Experiment

C. 7 (0.2 pt)
$D_{Y}=$
C. 8 (0.6 pt)

Fill in the third column in C. 5 table with the corresponding values t.

Experiment

Part D. Sample Z. Missed transmittance minimums
D. 1

Describe your method with sketches and equations.

Experiment

A1-11

D. 1 (1.2 pt)

Write down the normal wavelengths λ_{Z}^{n} and corresponding integers m. You can provide two variants of latter. Only the best one will be assessed.

λ_{Z}	m, variant 1	m, variant 2

D. 2 (2.0 pt)

Fill integers m in the table of $D .1$ box in accordance with wavelengths λ_{Z}. You can provide two sets of numbers. Only the best one will be assessed.
D. 3 (0.3 pt)
$D_{Z}=$
D. 4 (1.0 pt)

Write down the wavelengths λ_{Z}^{\prime} of missed transmittance minimums and corresponding integers m. You can provide two variants in accordance with answers in D.1-2. Only the best one will be assessed.

λ_{Z}^{\prime}, variant 1	m^{\prime}, variant 1	λ_{Z}^{\prime}, variant 2	m^{\prime}, variant 2

Experiment

Part E. Samples Y and Z. Internal structure of the period
E. 1 (1.2 pt)

Name of the sample Y
E. 2 (1.3 pt)

Name of the sample Z

Experiment

APhO
Additional graph paper
5

TV		T-1	T		TT.		TT	
,								
		-						

Experiment

APhO
Additional graph paper

PQ

Experiment

APhO
Additional graph paper
D^{2}

TV		T-1	T		TT.		TT	
,								
		-						

Experiment

APhO
Additional graph paper

TV		T-1	T		TT.		TT	
,								
		-						

Experiment

APhO
Additional graph paper
5
PQ

