$V_{
m stationary} =$

Nonlinear Dynamics in Electric Circuits (10 points)

Part A. Stationary states and instabilities (3 points)

Theory English (Official)

A.4 (1 pt)
Behaviour for $I(t=0) > I_{\mathrm{stationary}}$:
Behaviour for $I(t=0) < I_{\mathrm{stationary}}$:
Is the stationary state: □ stable? □ unstable?

Part B. Bistable non-linear elements in physics: radio transmitter (5 points)

Justification:

s =

Theory English (Official)

B.2 (1.9 pt)
Formula of $t_1=$
Numerical value of $t_1=$
Numerical value of v_1 —
Formula of $t_2=$
Numerical value of $t_2=$
Numerical value of $T=$
B.3 (0.7 pt)
$P \approx$
B.4 (0.6 pt)

Part C. Bistable non-linear elements in biology: neuristor (2 points)

C.2 $(0.6~{
m pt})$ Formula of $au_{
m crit}=$ Numerical value of $au_{
m crit}=$

C.3 $(0.2~\mathrm{pt})$ Is the circuit a neuristor? \square Yes \square No