

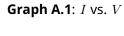
A1-1

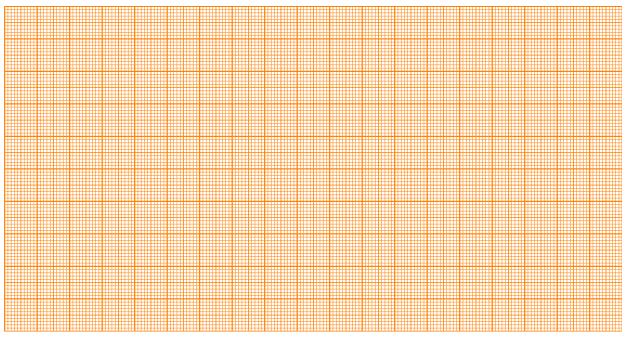
Problem 1: Electrical conductivity in two dimensions (10 points)

Write the numbers from 0 to 9 in the following table:

0	1	2	3	4	5	6	7	8	9

Part A. Four-point-probe (4PP) measurements (1.2 points)


A.1 (0.6 pt)


s =

I	V	I	V

Plot your data into **Graph A.1**.

A.2 (0.2 pt)

R =

A.3 (0.4 pt)

 $\Delta R =$

Part B. Sheet resistivity (0.3 points)

B.1 (0.3 pt)

 $\rho_{\square} \equiv \rho_{\infty} =$

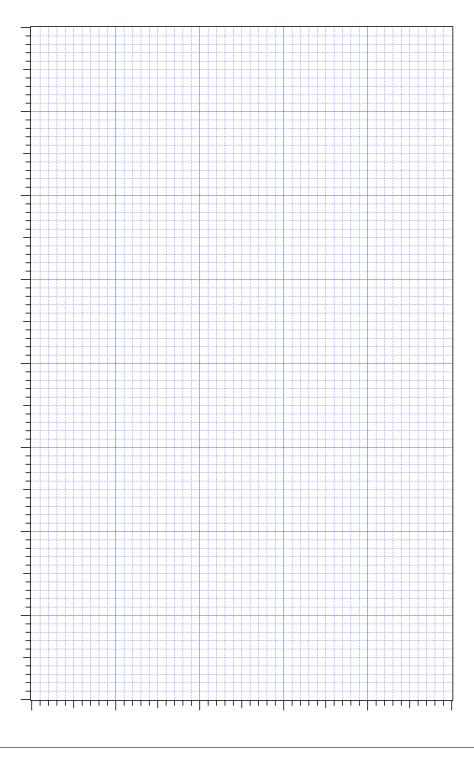
Part C. Measurements for different sample dimensions (3.2 points)

C.1 (3 pt)								
s =								
$ ho_{\infty}=$								
~∞								
The empty column	s can be used	d for interm	ediate results	5.				
w/s						\hat{R}		

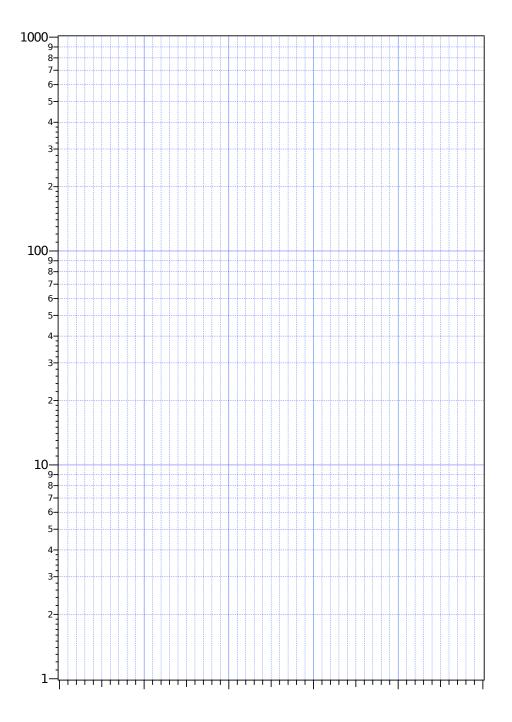
C.2 (0.2 pt)

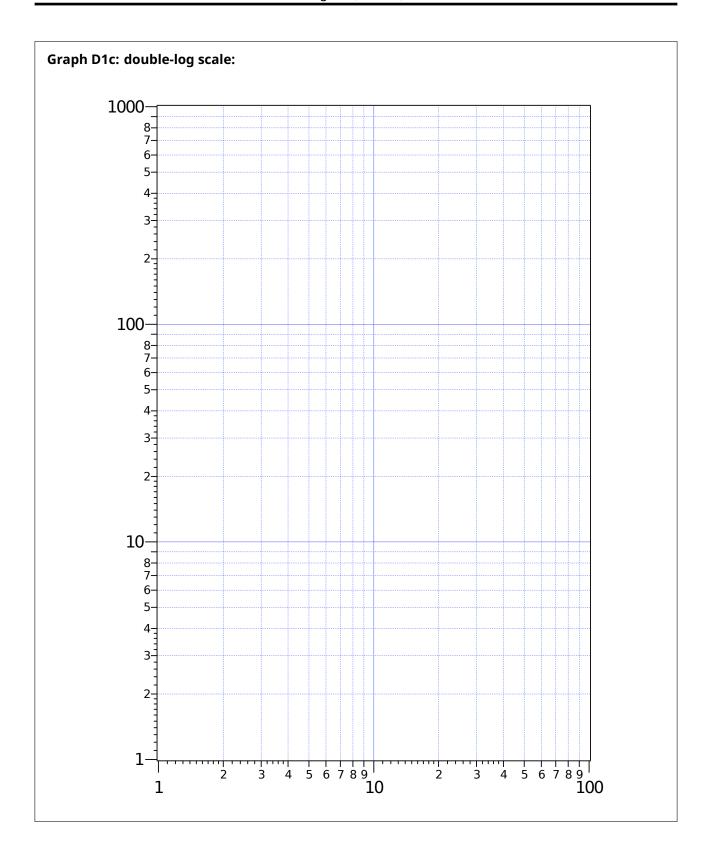
Use Table **C.1** for your results.

A1-4


Part D. Geometrical correction factor (1.9 points)

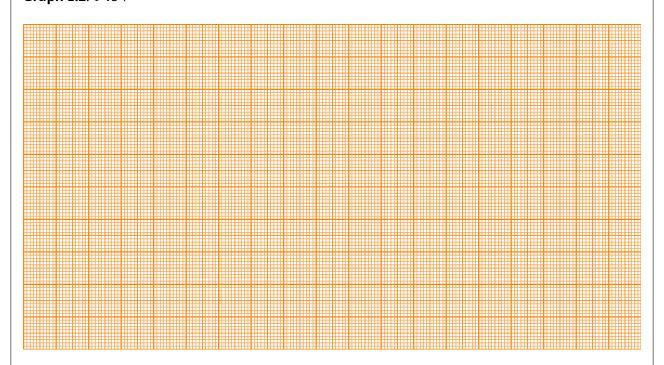
D.1 (1.0 pt)


Plot your data on the appropriate graph paper: linear (Graph **D.1a**), semi-logarithmic (**D.1b**) **or** double-logarithmic (**D.1c**) on the following pages.


D.2 (0.9 pt)			
a =			
b =			

Graph D.1a: linear scale:

Part E. The silicon wafer and the van der Pauw-method (3.4 points)


Note the number of your wafer here:

E.1 (0.4 pt)

I	V	I	V

E.2 (0.4 pt)

Graph E.2: I vs V

 $R_{4\mathrm{PP}} =$

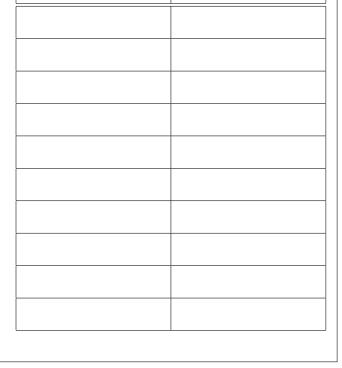
E.3 (0.2 pt)

$$w =$$

$$\rightarrow w/s =$$

$$f(w/s) =$$

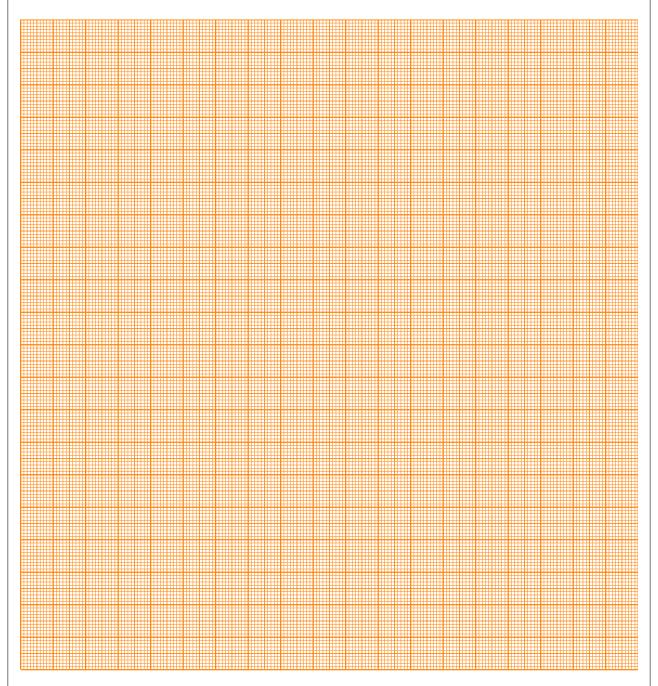
E.4 (0.1 pt)


$$\rho_{\square}(4\mathrm{PP})$$

E.5 (0.6 pt)

Sketch (orientation of the current):

V
7



A1-10

E.6 (0.6 pt)						
Sketch (orientation of the current):	I	V				
0						
0						

E.7 (0.5 pt)

Graph E.7: I vs. V

E.8 (0.4 pt) Calculation:			
$\rho_{\square}(\text{vdP}) =$			

E.9 (0.1 pt)

$$\frac{\Delta \rho_{\square}}{\rho_{\square}(\mathrm{vdP})} =$$

=

%

E.10 (0.1 pt)

Resistivity of the Cr thin film $\rho =$