The Extremum Principle ${ }^{1}$

A. The Extremum Principle in Mechanics

Consider a horizontal frictionless $x-y$ plane shown in Fig. 1. It is divided into two regions, I and II, by a line AB satisfying the equation $x=x_{1}$. The potential energy of a point particle of mass m in region I is $V=0$ while it is $V=V_{0}$ in region II. The particle is sent from the origin O with speed v_{1} along a line making an angle θ_{1} with the x-axis. It reaches point P in region II traveling with speed v_{2} along a line that makes an angle θ_{2} with the x-axis. Ignore gravity and relativistic effects in this entire task T-2 (all parts).

Figure 1
(A1) Obtain an expression for v_{2} in terms of m, v_{1} and V_{0}.

Solution:

From the principle of Conservation of Mechanical Energy

$$
\begin{aligned}
& \frac{1}{2} m v_{1}^{2}=\frac{1}{2} m v_{2}^{2}+V_{0} \\
& v_{2}=\left(v_{1}^{2}-\frac{2 V_{0}}{m}\right)^{1 / 2}
\end{aligned}
$$

(A2) Express v_{2} in terms of v_{1}, θ_{1} and θ_{2}.

Solution:

At the boundary there is an impulsive force $(\propto d V / d x)$ in the $-x$ direction. Hence only the velocity component in the x-direction $v_{1 x}$ suffers change. The component in the y-direction remains unchanged. Therefore

$$
v_{1 y}=v_{2 y}
$$

$$
v_{1} \sin \theta_{1}=v_{2} \sin \theta_{2}
$$

We define a quantity called action $A=m \int v(s) d s$, where $d s$ is the infinitesimal length along the trajectory of a particle of mass m moving with speed $v(s)$. The integral is taken over the path. As an example. for a particle moving with constant speed v on a circular path of radius R, the action A for one revolution will be $2 \pi m R v$. For a particle with constant energy E, it can be shown that of all the possible trajectories between two fixed points, the actual trajectory is the one on which A defined above is an extremum (minimum or maximum). Historically this is known as the Principle of Least Action (PLA).

[^0](A3) PLA implies that the trajectory of a particle moving between two fixed points in a region of constant potential will be a straight line. Let the two fixed points O and P in Fig. 1 have coordinates $(0,0)$ and $\left(x_{0}, y_{0}\right)$ respectively and the boundary point where the particle transits from region I to region II have coordinates $\left(x_{1}, \alpha\right)$. Note x_{1} is fixed and the action depends on the coordinate α only. State the expression for the action $A(\alpha)$. Use PLA to obtain the the relationship between v_{1} / v_{2} and these coordinates.

Solution:

By definition $A(\alpha)$ from O to P is

$$
A(\alpha)=m v_{1} \sqrt{x_{1}^{2}+\alpha^{2}}+m v_{2} \sqrt{\left(x_{0}-x_{1}\right)^{2}+\left(y_{0}-\alpha\right)^{2}}
$$

Differentiating w.r.t. α and setting the derivative of $A(\alpha)$ to zero

$$
\begin{gathered}
\frac{v_{1} \alpha}{\left(x_{1}^{2}+\alpha^{2}\right)^{1 / 2}}-\frac{v_{2}\left(y_{0}-\alpha\right)}{\left[\left(x_{0}-x_{1}\right)^{2}+\left(y_{0}-\alpha\right)^{2}\right]^{1 / 2}}=0 \\
\therefore \frac{v_{1}}{v_{2}}=\frac{\left(y_{0}-\alpha\right)\left(x_{1}^{2}+\alpha^{2}\right)^{1 / 2}}{\alpha\left[\left(x_{0}-x_{1}\right)^{2}+\left(y_{0}-\alpha\right)^{2}\right]^{1 / 2}}
\end{gathered}
$$

Note this is the same as A2, namely $v_{1} \sin \theta_{1}=v_{2} \sin \theta_{2}$.

B. The Extremum Principle in Optics

A light ray travels from medium I to medium II with refractive indices n_{1} and n_{2} respectively. The two media are separated by a line parallel to the x-axis. The light ray makes an angle i_{1} with the y -axis in medium I and i_{2} in medium II (see Fig. 2). To obtain the trajectory of the ray, we make use of another extremum (minimum or maximum) principle known as Fermat's principle of least time.

Figure 2
(B1) The principle states that between two fixed points, a light ray moves along a path such that the time taken between the two points is an extremum. Derive the relation between $\sin i_{1}$ and $\sin i_{2}$ on the basis of Fermat's principle.

Solution:

The speed of light in medium I is c / n_{1} and in medium II is c / n_{2}, where c is the speed of light in vacuum. Let the two media be separated by the fixed line $y=y_{1}$. Then time $T(\alpha)$ for light to travel from origin $(0,0)$ and $\left(x_{0}, y_{0}\right)$ is

$$
T(\alpha)=n_{1}\left(\sqrt{y_{1}^{2}+\alpha^{2}}\right) / c+n_{2}\left(\sqrt{\left(x_{0}-\alpha\right)^{2}+\left(y_{0}-y_{1}\right)^{2}}\right) / c
$$

Differentiating w.r.t. α and setting the derivative of $T(\alpha)$ to zero

$$
\begin{gathered}
\frac{n_{1} \alpha}{\left(y_{1}^{2}+\alpha^{2}\right)^{1 / 2}}-\frac{n_{2}\left(y_{0}-\alpha\right)}{\left[\left(x_{0}-\alpha\right)^{2}+\left(y_{0}-y_{1}\right)^{2}\right]^{1 / 2}}=0 \\
\therefore n_{1} \sin i_{1}=n_{2} \sin i_{2}
\end{gathered}
$$

[Note: Derivation is similar to A3. This is Snell's law.]

Shown in Fig. 3 is a schematic sketch of the path of a laser beam incident horizontally on a solution of sugar in which the concentration of sugar decreases with height. As a consequence, the refractive index of the solution also decreases with height.

Figure 3
(B2) Assume that the refractive index $n(y)$ depends only on y. Use the equation obtained in B1 to obtain the expresssion for the slope $d y / d x$ of the beam's path in terms of n_{0} at $y=0$ and $n(y)$.

Solution:

From Snell's law $n_{0} \sin i_{0}=n(y) \sin i$
Then,

$$
\frac{d y}{d x}=-\cot i
$$

$$
\begin{array}{r}
n_{0} \sin i_{0}=\frac{n(y)}{\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}} \\
\frac{d y}{d x}=-\sqrt{\left(\frac{n(y)}{n_{0} \sin i_{0}}\right)^{2}-1}
\end{array}
$$

(B3) The laser beam is directed horizontally from the origin $(0,0)$ into the sugar solution at a height y_{0} from the bottom of the tank as shown. Take $n(y)=n_{0}-k y$ where n_{0} and k are positive constants. Obtain an expression for x in terms of y and related quantities. You may use: $\int \sec \theta d \theta=\ln (\sec \theta+\tan \theta)+$ constant $\sec \theta=1 / \cos \theta$ or $\int \frac{d x}{\sqrt{x^{2}-1}}=$ $\ln \left(x+\sqrt{x^{2}-1}\right)+$ constant.

Solution:

$$
\int \frac{d y}{\sqrt{\left(\frac{n_{0}-k y}{n_{0} \sin i_{0}}\right)^{2}-1}}=-\int d x
$$

Note $i_{0}=90^{\circ}$ so $\sin i_{0}=1$.

Method I We employ the substitution

$$
\begin{gathered}
\xi=\frac{n_{0}-k y}{n_{0}} \\
\int \frac{d \xi\left(-\frac{n_{0}}{k}\right)}{\sqrt{\xi^{2}-1}}=-\int d x
\end{gathered}
$$

Let $\xi=\sec \theta$. Then

$$
\frac{n_{0}}{k} \ln (\sec \theta+\tan \theta)=x+c
$$

Or METHOD II

We employ the substition

$$
\begin{gathered}
\xi=\frac{n_{0}-k y}{n_{0}} \\
\int \frac{d \xi\left(-\frac{n_{0}}{k}\right)}{\sqrt{\xi^{2}-1}}=-\int d x \\
-\frac{n_{0}}{k} \ln \left(\frac{n_{0}-k y}{n_{0}}+\sqrt{\left(\frac{n_{0}-k y}{n_{0}}\right)^{2}-1}\right)=-x+c
\end{gathered}
$$

Now continuing

Considering the substitutions and boundary condition, $x=0$ for $y=0$ we obtain that the constant $c=0$.
Hence we obtain the following trajectory:

$$
x=\frac{n_{0}}{k} \ln \left(\frac{n_{0}-k y}{n_{0}}+\sqrt{\left(\frac{n_{0}-k y}{n_{0}}\right)^{2}-1}\right)
$$

(B4) Obtain the value of x_{0}, the point where the beam meets the bottom of the tank. Take y_{0} $=10.0 \mathrm{~cm}, n_{0}=1.50, k=0.050 \mathrm{~cm}^{-1}\left(1 \mathrm{~cm}=10^{-2} \mathrm{~m}\right)$.

Solution:

Given $y_{0}=10.0 \mathrm{~cm} . \quad n_{0}=1.50 \quad k=0.050 \mathrm{~cm}^{-1}$
From (B3)

$$
x_{0}=\frac{n_{0}}{k} \ln \left[\left(\frac{n_{0}-k y}{n_{0}}\right)+\left(\left(\frac{n_{0}-k y}{n_{0}}\right)^{2}-1\right)^{1 / 2}\right]
$$

Here $y=-y_{0}$

$$
\begin{gathered}
x_{0}=\frac{n_{0}}{k} \ln \left[\frac{\left(n_{0}+k y_{0}\right)}{n_{0}}+\left(\frac{\left(n_{0}+k y_{0}\right)^{2}}{n_{0}^{2}}-1\right)^{1 / 2}\right] \\
=30 \ln \left[\frac{2}{1.5}+\left(\left(\frac{2}{1.5}\right)^{2}-1\right)^{1 / 2}\right] \\
=30 \ln \left[\frac{4}{3}+\left(\frac{7}{9}\right)^{1 / 2}\right] \\
=30 \ln \left[\frac{4}{3}+0.88\right] \\
=24.0 \mathrm{~cm}
\end{gathered}
$$

C. The Extremum Principle and the Wave Nature of Matter

We now explore between the PLA and the wave nature of a moving particle. For this we assume that a particle moving from O to P can take all possible trajectories and we will seek a trajectory that depends on the constructive interference of de Broglie waves.
(C1) As the particle moves along its trajectory by an infinitesimal distance Δs, relate the change $\Delta \phi$ in the phase of its de Broglie wave to the change ΔA in the action and the Planck constant.

Solution:

From the de Broglie hypothesis

$$
\lambda \rightarrow \lambda_{d B}=h / m v
$$

where λ is the de Broglie wavelength and the other symbols have their usual meaning

$$
\begin{gathered}
\Delta \phi=\frac{2 \pi}{\lambda} \Delta s \\
=\frac{2 \pi}{h} m v \Delta s \\
=\frac{2 \pi \Delta A}{h}
\end{gathered}
$$

(C2)
Recall the problem from part A where the particle traverses from O to P (see Fig. 4). Let an opaque partition be placed at the boundary AB between the two regions. There is a small opening CD of width d in AB such that $d \ll\left(x_{0}-x_{1}\right)$ and $d \ll x_{1}$.
Consider two extreme paths OCP and ODP such that OCP lies on the classical trajectory discussed in part A. Obtain the phase difference $\Delta \phi_{C D}$ between

Figure 4 the two paths to first order.

Solution:

Consider the extreme trajectories $O C P$ and $O D P$ of (C1)
The geometrical path difference is $E D$ in region I and $C F$ in region II.
This implies (note: $d \ll\left(x_{0}-x_{1}\right)$ and $\left.d \ll x_{1}\right)$

$$
\begin{gathered}
\Delta \phi_{C D}=\frac{2 \pi d \sin \theta_{1}}{\lambda_{1}}-\frac{2 \pi d \sin \theta_{2}}{\lambda_{2}} \\
\Delta \phi_{C D}=\frac{2 \pi m v_{1} d \sin \theta_{1}}{h}-\frac{2 \pi m v_{2} d \sin \theta_{2}}{h} \\
=2 \pi \frac{m d}{h}\left(v_{1} \sin \theta_{1}-v_{2} \sin \theta_{2}\right) \\
=0 \quad(\text { from A2 or } \mathrm{B} 1)
\end{gathered}
$$

Thus near the clasical path there is invariably constructive interference.

D. Matter Wave Interference

Consider an electron gun at O which directs a collimated beam of electrons to a narrow slit at F in the opaque partition $\mathrm{A}_{1} \mathrm{~B}_{1}$ at $x=x_{1}$ such that OFP is a straight line. P is a point on the screen at $x=x_{0}$ (see Fig. 5). The speed in I is $v_{1}=2.0000$ $\times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ and $\theta=10.0000^{\circ}$. The potential in region II is such that the speed $v_{2}=$ $1.9900 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$. The distance $x_{0}-x_{1}$ is $250.00 \mathrm{~mm}\left(1 \mathrm{~mm}=10^{-3} \mathrm{~m}\right)$. Ignore electron-electron interaction.

Figure 5
(D1) If the electrons at O have been accelerated from rest, calculate the accelerating potential U_{1}.

Solution:

$$
\begin{gathered}
q U_{1}=\frac{1}{2} m v^{2} \\
=\frac{9.11 \times 10^{-31} \times 4 \times 10^{14}}{2} \mathrm{~J} \\
=2 \times 9.11 \times 10^{-17} \mathrm{~J} \\
=\frac{2 \times 9.11 \times 10^{-17}}{1.6 \times 10^{-19}} \mathrm{eV} \\
=1.139 \times 10^{3} \mathrm{eV}(\simeq 1100 \mathrm{eV}) \\
U_{1}=1.139 \times 10^{3} \mathrm{~V}
\end{gathered}
$$

(D2) Another identical slit G is made in the partition $\mathrm{A}_{1} \mathrm{~B}_{1}$ at a distance of $215.00 \mathrm{~nm}(1 \mathrm{~nm}$ $=10^{-9} \mathrm{~m}$) below slit F (Fig. 5). If the phase difference between de Broglie waves ariving at P from F and G is $2 \pi \beta$, calculate β.

Solution: Phase difference at P is

$$
\begin{aligned}
& \Delta \phi_{P}=\frac{2 \pi d \sin \theta}{\lambda_{1}}-\frac{2 \pi d \sin \theta}{\lambda_{2}} \\
& =2 \pi\left(v_{1}-v_{2}\right) \frac{m d}{h} \sin 10^{\circ}=2 \pi \beta
\end{aligned}
$$

$$
\beta=5.13
$$

(D3) What is is the smallest distance Δy from P at which null (zero) electron detection maybe expected on the screen? [Note: you may find the approximation $\sin (\theta+\Delta \theta) \approx \sin \theta+$ $\Delta \theta \cos \theta$ useful]

Solution:

From previous part for null (zero) electron detection $\Delta \phi=5.5 \times 2 \pi$

$$
\begin{aligned}
& \therefore m v_{1} \frac{d \sin \theta}{h}-\frac{m v_{2} d \sin (\theta+\Delta \theta)}{h}=5.5 \\
& \sin (\theta+\Delta \theta)=\frac{\frac{m v_{1} d \sin \theta}{h}-5.5}{\frac{m v_{2} d}{h}} \\
&=\frac{v_{1}}{v_{2}} \sin \theta-\frac{h}{m} \frac{5.5}{v_{2} d} \\
&=\frac{2}{1.99} \sin 10^{\circ}-\frac{5.5}{1374.78 \times 1.99 \times 10^{7} \times \times 2.15 \times 10^{-7}} \\
&=0.174521-0.000935
\end{aligned}
$$

This yields $\Delta \theta=-0.0036^{\circ}$

The closest distance to P is

$$
\begin{aligned}
\Delta y & =\left(x_{0}-x_{1}\right)(\tan (\theta+\Delta \theta)-\tan \theta) \\
& =250(\tan 9.9964-\tan 10) \\
& =-0.0162 m m \\
& =-16.2 \mu \mathrm{~m}
\end{aligned}
$$

The negative sign means that the closest minimum is below P .

Approximate Calculation for θ and Δy

Using the approximation $\sin (\theta+\Delta \theta) \approx \sin \theta+\Delta \theta \cos \theta$
The phase difference of $5.5 \times 2 \pi$ gives

$$
m v_{1} \frac{d \sin 10^{\circ}}{h}-m v_{2} \frac{d\left(\sin 10^{\circ}+\Delta \theta \cos 10^{\circ}\right)}{h}=5.5
$$

From solution of the previous part

$$
m v_{1} \frac{d \sin 10^{\circ}}{h}-m v_{2} \frac{d \sin 10^{\circ}}{h}=5.13
$$

Therefore

$$
m v_{2} \frac{d \Delta \theta \cos 10^{\circ}}{h}=0.3700
$$

This yields $\Delta \theta \approx 0.0036^{\circ}$
$\Delta y=-0.0162 \mathrm{~mm}=-16.2 \mu \mathrm{~m}$ as before
(D4) The electron beam has a square cross section of $500 \mathrm{~nm} \times 500 \mathrm{~nm}$ and the setup is 2 m long. What should be the minimum beam flux density $I_{\min }$ (number of electrons per unit normal area per unit time) if, on an average, there is at least one electron in the setup at a given time?

Solution: The product of the speed of the electrons and number of electron per unit volume on an average yields the intensity.
Thus $N=1=$ Intensity \times Area \times Length/ Electron Speed $=I_{\text {min }} \times 0.25 \times 10^{-12} \times 2 / 2 \times 10^{7}$
This gives $I_{\text {min }}=4 \times 10^{19} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$
R. Bach, D. Pope, Sy-H Liou and H. Batelaan, New J. of Physics Vol. 15, 033018 (2013).

[^0]: ${ }^{1}$ Manoj Harbola (IIT-Kanpur) and Vijay A. Singh (ex-National Coordinator, Science Olympiads) were the principal authors of this problem. The contributions of the Academic Committee, Academic Development Group and the International Board are gratefully acknowledged.

