A The Extremum Principle in Mechanics

Consider a horizontal frictionless $x-y$ plane shown in Fig. 1. It is divided into two regions, I and II, by a line AB satisfying the equation $x=x_{1}$. The potential energy of a point particle of mass m in region I is $V=0$ while it is $V=V_{0}$ in region II. The particle is sent from the origin O with speed v_{1} along a line making an angle θ_{1} with the x-axis. It reaches point P in region II traveling with speed v_{2} along a line that makes an angle θ_{2} with the x-axis. Ignore gravity and relativistic effects in this entire task T-2 (all parts).

A1	Obtain an expression for v_{2} in terms of m, v_{1} and V_{0}.	$\mathbf{0 . 2}$
A2	Express v_{2} in terms of v_{1}, θ_{1} and θ_{2}.	$\mathbf{0 . 3}$

We define a quantity called action $A=m \int v(s) d s$, where $d s$ is the infinitesimal length along the trajectory of a particle of mass m moving with speed $v(s)$. The integral is taken over the path. As an example, for a particle moving with constant speed v on a circular path of radius R, the action A for one revolution will be $2 \pi m R v$. For a particle with constant energy E, it can be shown that of all the possible trajectories between two fixed points, the actual trajectory is the one on which A defined above is an extremum (minimum or maximum). Historically this is known as the Principle of Least Action (PLA).

	PLA implies that the trajectory of a particle moving between two fixed points in a region of constant potential will be a straight line. Let the two fixed points 0 and P in Fig. 1 have coordinates $(0,0)$ and	
A3	($\left.x_{0}, y_{0}\right)$ respectively and the boundary point where the particle transits from region I to region II have coordinates $\left(x_{1}, \alpha\right)$. Note that x_{1} is fixed and the action depends on the coordinate α only. State the expression for the action $A(\alpha)$. Use PLA to obtain the relationship between v_{1} / v_{2} and these coordinates.	$\mathbf{1 . 0}$

B The Extremum Principle in Optics

A light ray travels from medium I to medium II with refractive indices n_{1} and n_{2} respectively. The two media are separated by a line parallel to the x-axis. The light ray makes an angle i_{1} with the y-axis in medium I and i_{2} in medium II (see Fig. 2). To obtain the trajectory of the ray, we make use of another extremum (minimum or maximum) principle known as Fermat's principle of least time.

Figure 2

B1 The principle states that between two fixed points, a light ray moves along a path such that time taken B1 between the two points is an extremum. Derive the relation between $\sin i_{1}$ and $\sin i_{2}$ on the basis of Fermat's principle.

Shown in Fig. 3 is a schematic sketch of the path of a laser beam incident horizontally on a solution of sugar in which the concentration of sugar decreases with height. As a consequence, the refractive index of the solution also decreases with height.

Figure 3: Tank of Sugar Solution

[^0]| | You may use: $\int \sec \theta d \theta=\ln (\sec \theta+\tan \theta)+$ constant, where $\sec \theta=1 / \cos \theta$ or
 $\int \frac{d x}{\sqrt{x^{2}-1}}=\ln \left(x+\sqrt{x^{2}-1}\right)+$ constant | |
| :--- | :--- | :--- |
| B4 | Obtain the value of x_{0}, the point where the beam meets the bottom of the tank. Take $y_{0}=10.0 \mathrm{~cm}$,
 $n_{0}=1.50, k=0.050 \mathrm{~cm}^{-1}\left(1 \mathrm{~cm}=10^{-2} \mathrm{~m}\right)$. | $\mathbf{0 . 8}$ |

C The Extremum Principle and the Wave Nature of Matter
We now explore the connection between the PLA and the wave nature of a moving particle. For this we assume that a particle moving from 0 to P can take all possible trajectories and we will seek a trajectory that depends on the constructive interference of de Broglie waves.

C 1	As the particle moves along its trajectory by an infinitesimal distance of its de Broglie wave to the change ΔA in the action and the Planck
C 2	Recall the problem from part A where the particle traverses from O to P (see Fig. 4). Let an opaque partition be placed at the boundary AB between the two regions. There is a small opening CD of width d in AB such that $d \ll\left(x_{0}-x_{1}\right)$ and $d \ll x_{1}$.
Consider two extreme paths OCP and ODP such that OCP lies on the classical trajectory discussed in part A. Obtain the phase difference $\Delta \varphi_{\mathrm{CD}}$ between the two paths to first order.	

nce Δs, relate the change $\Delta \varphi$ in the phase k constant.	0.6
	1.2

D Matter Wave Interference

Consider an electron gun at 0 which directs a collimated beam of electrons to a narrow slit at F in the opaque partition $\mathrm{A}_{1} \mathrm{~B}_{1}$ at $x=x_{1}$ such that OFP is a straight line. P is a point on the screen at $x=x_{0}$ (see Fig. 5). The speed in I is $v_{1}=2.0000 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$ and $\theta=10.0000^{\circ}$. The potential in II is such that speed $v_{2}=$ $1.9900 \times 10^{7} \mathrm{~m} \mathrm{~s}^{-1}$. The distance $x_{0}-x_{1}$ is 250.00 mm $\left(1 \mathrm{~mm}=10^{-3} \mathrm{~m}\right)$. Ignore electron-electron interaction.

Figure 5

D1	If the electrons at O have been accelerated from rest, calculate the accelerating potential U_{1}.	$\mathbf{0 . 3}$
D2	Another identical slit G is made in the partition $\mathrm{A}_{1} \mathrm{~B}_{1}$ at a distance of $215.00 \mathrm{~nm}\left(1 \mathrm{~nm}=10^{-9} \mathrm{~m}\right)$ below slit F (Fig. 5). If the phase difference between de Broglie waves arriving at P through the slits F and G is $2 \pi \beta$, calculate β.	$\mathbf{0 . 8}$
D3	What is the smallest distance Δy from P at which null (zero) electron detection maybe expected on the screen? [Note: you may find the approximation $\sin (\theta+\Delta \theta) \approx \sin \theta+\Delta \theta \cos \theta$ useful]	$\mathbf{1 . 2}$
D4	The beam has a square cross section of $500 \mathrm{~nm} \times 500 \mathrm{~nm}$ and the setup is 2 m long. What should be the minimum flux density $I_{\text {min }}$ (number of electrons per unit normal area per unit time) if, on an average, there is at least one electron in the setup at a given time?	$\mathbf{0 . 4}$

[^0]: B2
 Assume that the refractive index $n(y)$ depends only on y. Use the equation obtained in B1 to obtain the expression for the slope $d y / d x$ of the beam's path in terms of refractive index n_{0} at $y=0$ and $n(y)$.
 The laser beam is directed horizontally from the origin $(0,0)$ into the sugar solution at a height y_{0} from the
 B3 bottom of the tank as shown in figure 3. Take $n(y)=n_{0}-k y$ where n_{0} and k are positive constants. Obtain an expression for x in terms of y and related quantities for the actual trajectory of the laser beam.
 ${ }^{1}$ Manoj Harbola (IIT-Kanpur) and Vijay A. Singh (ex-National Coordinator, Science Olympiads) were the principal authors of this problem. The contributions of the Academic Committee, Academic Development Group and the International Board are gratefully acknowledged.

