Diffraction due to Helical Structure ${ }^{1}$

Part A: Determination of geometrical parameters of a helical spring

[^0]

		S	$\mathrm{E}-\mathrm{I}$		3 of 6
	$\begin{aligned} & P=\frac{d_{1}}{\cos \alpha_{1}}=\frac{0.89}{\cos 10.96} \\ & P=0.91 \mathrm{~mm} \end{aligned}$				
A8	Expression of R in terms of P and α_{1} :$\begin{aligned} & \tan \alpha_{1}=\frac{P}{2 \pi R} \\ & R=\frac{P}{2 \times \pi \times \tan \alpha_{1}}=\frac{0.91}{2 \times \pi \times \tan 10.96} \\ & R=0.75 \mathrm{~mm} \end{aligned}$				0.2
(Total					3.9

Part B: Determination of geometrical parameters of double-helix-like pattern

Reference for Part A : G. Braun, D. Tierney and H. Schmitzer, Phys. Teach. 49, 140 (2011).

Pattern P - 1 fós	$\begin{aligned} & \tan 2 \alpha_{1}=\frac{42.43}{105.40} \\ & \alpha_{1}=10.96^{\circ} \end{aligned}$
Pattern P1 ($D=2770 \mathrm{~mm}$)	Pattern P2
Pattern $\operatorname{P} .3$ $\begin{aligned} & \tan 2 \alpha_{2}=\frac{36.67}{102.04} \\ & \alpha_{2}=9.88^{\circ} \end{aligned}$	Pattem P. 4
Pattern P3 ($D=795 \mathrm{~mm}$)	Pattern P4 ($D=2770 \mathrm{~mm}$)

[^0]: ${ }^{1}$ Praveen Pathak (HBCSE-TIFR, Mumbai), Charudatt Kadolkar (IIT, Guwahati), and Manish Kapoor (Christ Church College, Kanpur) were the principal authors of this problem. The contributions of the Academic Committee, Academic Development Group and the International Board are gratefully acknowledged.

