page 1 of 17

16th ASIAN PHYSICS OLYMPIAD 2015 3rd-11th MAY, HANGZHOU, CHINA

Experimental Competition May 7, 2015 08:30-13:30 hours

Marking Scheme

Experiment A

A.1	<i>l</i> , wide measu its cap Com PZT p each r	e a PZT plat th w , and the re its mass r acitance C (and asidering the plate and the measurement ndard error.	le to isure f the epeat	Total:1.6 0.2 data table. 0.2 units. -0.1 each unit missing. 0.3 standard error. -0.1 each error missing.				
	1 2 3 4 5 6 Avg.	<i>l</i> (mm) 45.00 45.02 45.00 45.02 45.02 45.00 45.01±0.02	00 6.98 1.00 2.24 18.19 02 7.00 1.00 2.23 18.13 00 7.02 0.98 2.26 18.17 02 7.04 0.98 2.25 18.19 02 7.04 1.00 2.25 18.20 00 7.04 1.00 2.25 18.21		 0.3 correct number of significant figures. -0.1 each wrong significant figure. 0.3 correct reading of Vernier caliper. 0.2 right value of C (0.2:17.30~19.10nF) (0.1:16.40~17.30nF, 19.10~20.00nF) 0 otherwise. 			
	$ \begin{array}{c} 1\\ 2\\ 3\\ 4\\ 5\\ 6\\ \end{array} $	45.00	<i>w</i> (mm) 7.02			C(nF) 18.19 18.13 18.17 18.19 18.20 18.20 18.21) 3 7)	0.2repeatedmeasurementofcapacitance(0.2: repeat \geq 6times)(0.1: repeat \geq 3times)00 otherwise.
	Avg. If reported result.	45.00±0.02 eated measu						

A.2	Now calculate the density ρ and the relative permittivity ε_r of the PZT plate. Based on standard errors obtained from A.1, carry out	Total: 1.4 0.1 unit of ρ.
	the error analysis to estimate the uncertainties of ρ and ε_r (vacuum	0.2 right value of ρ .
		e ,
	permittivity $\varepsilon_0 = 8.85 \times 10^{-12} \text{ F/m}$).	(0.2 :6.85~7.55)
		(0.1 :6.50~6.85,7.55~
	$a = \frac{m}{2} = 7.20 \times 10^3 \text{ kg/m}^3$	7.90)
	$\rho = \frac{m}{lwt} = 7.20 \times 10^3 \text{ kg/m}^3$	0 otherwise.
	$\frac{\Delta\rho}{\rho} = \sqrt{\left(\frac{\Delta m}{m}\right)^2 + \left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta w}{w}\right)^2 + \left(\frac{\Delta t}{t}\right)^2} = 0.021$	0.2 $\frac{\Delta \rho}{\rho}$ expression.
	$\therefore \Delta \rho = 0.15 \times 10^3 \text{ kg/m}^3$	0.2 right value of $\Delta \rho$.
	$\therefore \Delta p = 0.13 \times 10^{\circ} \text{ kg/m}$	(0.2 :0.05~0.30)
	$\rho = (7.20 \pm 0.15) \times 10^3 \text{ kg/m}^3$	(0.1 :0.01~0.05,
		0.30~0.50)
	Ct	0 otherwise.
	$\varepsilon_r = \frac{Ct}{\varepsilon lw} = 6.44 \times 10^3$	
		The same criteria for
	$\frac{\Delta \varepsilon_r}{\varepsilon_r} = \sqrt{\left(\frac{\Delta C}{C}\right)^2 + \left(\frac{\Delta l}{l}\right)^2 + \left(\frac{\Delta w}{w}\right)^2 + \left(\frac{\Delta t}{t}\right)^2} = 0.021$	ε_r .
	$\Delta \varepsilon_r = 0.14 \times 10^3$	
		02.right value of ε_r
	$\varepsilon_{x} = (6.44 \pm 0.14) \times 10^{3}$	(0.2 :6.10~6.80)
	$\sigma_r = (0.11 \pm 0.11) \times 10$	(0.1 :5.75~6.10,
		6.80~7.15)
	Alternative: calculate ρ each time:7.13,7.08,7.30,7.24,7.10,7.10,	0 otherwise
		0.2 right value of $\Delta \varepsilon_r$.
	$\left(\sum_{i=1}^{n} \left(\rho_{i} - \overline{\rho}\right)^{2}\right)^{2}$	(0.2 :0.05~0.30)
	$\sigma_{\overline{\rho}} = \sqrt{\frac{\sum_{i=1}^{\infty} (\rho_i - \overline{\rho})^2}{n(n-1)}} = 0.04 \times 10^3 \text{ kg/m}^3$	(0.1 :0.01~0.05,
	n(n-1)	0.30~0.50)
		0 otherwise.
	$\rho = (7.16 \pm 0.04) \times 10^3 \text{ kg/m}^3$	o other wise.
	Or	
		Alternative:
	$\left \sum_{n=1}^{n}\left(2,\frac{-1}{2}\right)^{2}\right $	
	$\sum_{i=1}^{n} (p_i - p) = 0.10 \cdot 10^3 1 \cdot (-3)^3$	0.2 ρ.
	$\sigma_{\overline{\rho}} = \sqrt{\frac{\sum_{i=1}^{n} (\rho_i - \overline{\rho})^2}{(n-1)}} = 0.10 \times 10^3 \text{ kg/m}^3$	0.1 unit of ρ.
		0.1 $\Delta \rho$ expression.
	$\rho = (7.16 \pm 0.10) \times 10^3 \text{ kg/m}^3$	0.1 right value of $\Delta \rho$.
		(0.1 :0.01~0.40)
		0 otherwise.
		0.2 data points.

	(0.2 measure≥6times)
	(0.1 :3~5times)
	0 otherwise.
	The same criteria for
	\mathcal{E}_r .

Experiment B

B.1	Derive the expressions for the resonant frequency f_r and the antiresonant frequency f_a of the equivalent circuit.	Total: 1.0
	The impedance of the capacitance C_0 , C_1 and inductance L_1 are	
	$Z_0 = \frac{1}{i\omega C_0},$	
	$Z_1 = \frac{1}{i\omega C_1},\tag{1}$	0.1 C_0 impedance.
	$i\omega C_1$ $Z_2 = i\omega L_1$	0.1 C_1 impedance.
	Respectively. Assume the total impedance of the equivalent circuit is Z , then we have	0.1 L_1 impedance.
	$\frac{1}{Z} = \frac{1}{Z_0} + \frac{1}{Z_1 + Z_2} = i\omega C_0 + \frac{1}{\frac{1}{i\omega C_1} + i\omega L_1} = i\omega \frac{C_0 - \omega^2 L_1 C_0 C_1 + C_1}{1 - \omega^2 L_1 C_1}$	0.3 total impedance.
	(2) Resonance condition:	
	$1 - \omega^2 L_1 C_1 = 0 \Longrightarrow f_r = \frac{1}{2\pi \sqrt{L_1 C_1}} $ (3)	0.2 resonant frequency.
	Antiresonance condition:	
	$C_{0} - \omega^{2} L_{1} C_{0} C_{1} + C_{1} = 0 \Longrightarrow f_{a} = \frac{1}{2\pi} \sqrt{\frac{1}{L_{1} C_{1}} + \frac{1}{L_{1} C_{0}}} $ (4)	0.2 antiresonant frequency.

Freq	I(mA)	Freq	I(mA)	Freq	I(mA)	Freq	I(mA)	0.3 fr: 0.3 fa.
(kHz)	0.70	(kHz)	2 0.07	(kHz)	4.00	(kHz)	1.10	0.3 0.1kHz freq.
2	0.58	30.5	20.86	32.4	4.82	34.3	1.18	resolution near fi
4	1.13	30.6	21.28	32.5	4.06	34.0	1.37	fa.
6	1.68	30.7	21.50	32.6	3.37	34.5	1.52	0.5 figure
8	2.21	30.8	21.47	32.7	2.76	34.6	1.67	(0.1: data points
10	2.75	30.9	21.13	32.8	2.20	34.7	1.82	0.1: units,
12 14	3.29 3.85	31.0	20.51	32.9 33.0	1.73 1.29	34.8	1.96 2.10	0.1: axis label,
14	4.42	31.1 31.2	19.64 18.55	33.1	0.94	34.9 35	2.10	0.1: axis ticks la
18	5.03	31.2	17.35	33.2	0.94	36	3.35	0.1: smooth curv
20	5.69	31.4	16.06	33.3	0.00	37	4.18	
20	6.46	31.5	14.73	33.4	0.47	38	4.82	0.1: unit of <i>d</i> .
24	7.39	31.6	13.40	33.5	0.30	39	5.34	1.0 right value o
26	8.72	31.7	12.10	33.6	0.33	40	5.78	(1.0:4.20~4.70)
28	11.05	31.8	10.85	33.7	0.38	10	0.70	(0.5 :3.95~4.20,
30	17.69	31.9	9.65	33.8	0.48			4.70~4.95)
30.1	18.34	32.0	8.55	33.9	0.60			0 otherwise.
30.2	18.99	32.1	7.50	34.0	0.74			
30.3	19.66	32.2	6.52	34.1	0.89			
30.4	20.29	32.3	5.63	34.2	1.04			

Experiment C

Now meas emperature				of the	PZT p	late at	various	Total:1.5 0.2 data table. 0.2 units. 0.2 significant figures.
<i>T</i> (°C)	17.0	30.0	40.0	50.0	60.0	70.0	80.0	0.4 data points
C(nF)	16.80	18.25	19.77	21.08	23.07	25.60	27.80	$(0.4: \ge 6 \text{ data points})$
1/C(nF ⁻¹)	0.0595	0.0548	0.0506	0.0474	0.0433	0.0391	0.0360	(0.2: 4~5 data points)
								0 otherwise. 0.5 temperature range (0.5: from room temperature to ≥80°C) (0.3: temperature range 35~50°C) (0.1: temperature range 20~35°C) 0 otherwise.

Experiment D

D 1	A gave a that the log other of the a log income we die T and the m	Tatal 0 (
D.1	Assume that the length of the aluminum rod is L and the wave	Total: 0.6
	velocity is u . Under the free boundary condition, derive the equation	0.2 eqn.(1).
	for the frequencies f_n of the standing (resonant) waves along the long	0.1 eqn.(2).
	rod. Then derive the equation for the wave velocity u from f_n .	0.1 eqn.(3).
		0.2 eqn.(4).
	Consider the aluminum rod as a one dimensional long string with free	
	Boundary condition, then the standing wave condition is	Note: express <i>u</i>
	$L = n\frac{\lambda}{2}, n = 1, 2, 3, \dots $ (1)	in terms of f_n
		instead of <u>∆f</u> is
	According to	also acceptable.
	$\lambda f = u \tag{2}$	
	The standing wave frequencies are	
	$f_n = n \frac{u}{2L}, n = 1, 2, 3, \dots $ (3)	
	Continually changing the vibration frequency, we can find out a series	;
	of standing wave frequencies f_n and calculate the average distance	
	between two peaks $\overline{\Delta f}$, we have	
	$u = 2L\overline{\Delta f} \tag{4}$	
l	1	

	own in Fi	1	2	3	4	5	6	Avg	5	0.1 units. 0.1 sign	nifica
	L(cm)	49.9	3 49.9	98 50.0	0 50.0	02 50.0	5 50.0	3 50.0	00±0.05	$\begin{bmatrix} figures. \\ 0 1 \\ 0 1 \\ 0 \end{bmatrix}$	1
	<i>f</i> (kHz)		6.37	8.81	11.81	14.70	17.54	20.45	23.44	$\begin{array}{ c c c } 0.1 & \geq 10 \\ \text{points.} \end{array}$	da
	<i>I</i> (µA)		16.5	42.6	144.0	249.5	336.9	247.7	358.4	0.4 s	tandir
	<i>f</i> (kHz)		26.40	29.47	31.14		35.22	38.76	40.13	wave	peal
	<i>I</i> (µA)		296.2	429.9	109.2	907	671	446.8	479	resulting fi	
1	I (μA) 000 800 600 400 200 0									resolution 0.01kHz. 0.1 at lea miscellane peak.	e. quend ist of ous
	U		10	20		30	40	ſ	(kHz)	0.2 sp containing	ectru 8

D.3	Identify the res Calculate the tr	-	2	•				Total:	1.4
	error analysis.				Jung	y and	carry out the	0.3	successive
								differe	
	Attention: there	e might be	irrelevant	peaks o	caused	by in	perfection of	metho	od.
	the experiment	al setup, e.	g., imperfe	ect free	bound	lary co	ondition. You		
	need to make a	judgement	and ignore	e the irr	elevan	it peak	s during your	Note:	
	analysis.						1	reasonable	
		$i f_i(kHz)$ 1 8.81	$F_i = f_{i+5} - f_i$	(kHz)	$\Delta F_{\rm i}$	kHz)			od that
	_		correct						
	$E_{2} = f_{7} f_{2} 14 59 \wedge E_{2} 0 12 $							result accept	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
		4 17.34 5 20.45	$F_4 = f_9 - f_4$					0.1 da	ta table.
		6 23.44						0.4	
		7 26.40	$F_5 = f_{10} - f_5$ \overline{F}	1471	σ_{-}	0.04		0.1	significant
		8 29.47		14./1	$\bullet_{\Delta F}$	0.01		figure	S.
		9 32.35						0.1 un	nit
		10 35.22						0.1 un	
		$\overline{\Delta f} = \frac{\overline{F}}{5} =$ $\sigma_{\overline{\Delta f}} = \frac{\sigma_{\overline{\Delta F}}}{5}$ $u =$	2.94 kHz = $\frac{1}{5}\sqrt{\frac{\sum(n/n)}{n(n/n)}}$ = $2L\overline{\Delta f} = 2$			ťΗz		transv veloci (0.6 km/s) (0.2 km/s, km/s)	2.80~3.10 2.65~2.80 3.10~3.25
			$\frac{\Delta L}{L})^2 + (\frac{\Delta L}{L})^2 + (\frac{\Delta L}{L})^2$ = 0.01 kn (2.94 ± 0)	n/s		035		Δu (0.2 :0 km/s) (0.1 :0 km/s)	.15~0.30

D.4	transdu	icer, re m cor	cord t	he pea g all :	k valu	ies mo	nitorec	l by th	ne sens	aced by the sor. Draw a ilar to that	
	f(kHz) I(μA) f(kHz)	5.18 15.5 26.44	8.90 52.7 29.40	10.50 216.2 30.64	14.53 103.6 32.33	15.53 353.3 35.20	20.63 555 35.55	23.39 156.4 37.81	24.68 45.8 38.74	25.67 1328 40.26	points.0.4standingwavepeaksresulting from the
	<i>I</i> (μA) <i>f</i> (kHz) <i>I</i> (μA)	414.5 40.79 194.5	848 41.53 32.7	1940	1593	2589	2331	1043	118.8	450	longitudinal waves $(0.4:\geq 6 \text{ peaks})$ $(0.2:3\sim 5 \text{ peaks})$ 0 otherwise.
	I (1 2500 2000 1500 1000 500 0				20				7 *(kI	I Z)	 0 otherwise. 0.2 standing wave peaks resulting from the transverse waves (0.2:≥4 peaks) (0.1:2~3peaks) 0 otherwise. 0.3 frequency resolution 0.01kHz. 0.1 at least one miscellaneous peak. 0.2 spectrum containing all measured peaks.

D.5 Compare with the result in D.2, identify the resonant peaks c the transverse waves. Select the resonant peaks resulting	-
longitudinal waves and calculate the longitudinal wave	-
accordingly. Carry out the error analysis.	difference
	method.
$f_i(\text{kHz}) \qquad F_i = f_{i+3} - f_i(\text{kHz}) \qquad \Delta F_i(\text{kHz})$	Notes other
$\begin{array}{ c c c c c c c c c }\hline 10 & 50 \\ \hline 15.53 \end{array} F_{I} = f_{4} - f_{I} & 15.17 & \Delta F_{I} & 0.10 \\ \hline \end{array}$	<u>Note: other</u> reasonable
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	method that
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	yields correct
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	result is
$\begin{array}{ c c c c }\hline \hline \hline & \hline &$	acceptable.
\overline{F}	0.1 data table.
$\overline{\Delta f} = \frac{F}{3} = 5.02 \text{ kHz}$	
$\tau = 1 \sqrt{\sum (\Delta E)^2}$	0.1 significan
$\sigma_{\overline{\Delta f}} = \frac{\sigma_{\overline{\Delta F}}}{3} = \frac{1}{3} \sqrt{\frac{\sum (\Delta F_i)^2}{n(n-1)}} = 0.03 \text{ kHz}$	figures.
$3 3 3 \gamma n(n-1)$	0.1 units.
$u = 2L\overline{\Delta f} = 5.02$ km/s	U.I units.
	0.6 right value of
$\frac{\Delta u}{u} = \sqrt{\left(\frac{\Delta L}{L}\right)^2 + \left(\frac{\Delta f}{f}\right)^2} = 0.006$	longitudinal
$u = \sqrt{\begin{array}{c} L \end{array}} f \qquad $	wave velocity
$\Delta u = 0.03 \text{ km/s}$	(0.6 :4.70~5.20
	km/s)
Thus the longitudinal wave velocity is given by	(0.3 :4.50~4.70
	km/s,5.20~5.40
$u = 5.02 \pm 0.03$ km/s	km/s)
	0 otherwise.
	0.2 right value o
	Δu
	(0.2 :0.01~0.20
	km/s)
	(0.1 :0.20~0.40
	km/s)
	0 otherwise.

Experiment E

E.2	In the measur	red spectrum	identif	w the re	econant	neaba	correct	onding to the	Total: 0.8	
1.2								t of the cut to	10101.0.0	
	the end of the						ne spor		0.1 significant	
						P21			figures.	
		<i>(</i> 111)	0.05	17.16	25.17	22.27	40.92]	0.1 units.	
		f(kHz)	8.85	17.15	25.17	33.37	40.82		0.6 right value	
		$I(\mu A)$	66.0	358.9	751	432.7	242.4		of distance	
		f_{i+2} - f_i (kHz)	16.32		16.22		15.65		(0.6	
		$\overline{\Delta f}$ (kHz) 8.03								
									(0.3	
		0.26~0.28m,								
			Ду -	$=\frac{1}{2}\overline{F} =$ $u = \frac{u}{2\overline{\Delta f}}$	0.11 K	I IZ			$0.32 \sim 0.34m$)	
		0 otherwise.								