IANGZHOU CHINA

Experimental Competition
 May 7, 2015
 08:30-13:30 hours

Marking Scheme

Experiment A

$16^{\text {th }}$ ASIAN PHYSICS OLYMPIAD 2015 $3^{\text {rd }}-11^{\text {th }}$ MAY, HANGZHOU, CHINA

Experiment B

B. $\left.1 \begin{array}{l}\text { Derive the expressions for the resonant frequency } f_{r} \text { and } \\ \text { antiresonant frequency } f_{a} \text { of the equivalent circuit. } \\ \text { The impedance of the capacitance } C_{0}, C_{l} \text { and inductance } L_{l} \text { are } \\ Z_{0}=\frac{1}{i \omega C_{0}}, \\ Z_{1}=\frac{1}{i \omega C_{1}}, \\ Z_{2}=i \omega L_{1}\end{array}\right] \begin{aligned} & \text { Respectively. Assume the total impedance of the equivalent circ } \\ & \text { is } \mathrm{Z} \text {, then we have } \\ & \frac{1}{Z}=\frac{1}{Z_{0}}+\frac{1}{Z_{1}+Z_{2}}=i \omega C_{0}+\frac{1}{\frac{1}{i \omega C_{1}}+i \omega L_{1}}=i \omega \frac{C_{0}-\omega^{2} L_{1} C_{0} C_{1}+C_{1}}{1-\omega^{2} L_{1} C_{1}}\end{aligned}$
(2)

Resonance condition:

$$
\begin{equation*}
1-\omega^{2} L_{1} C_{1}=0 \Rightarrow f_{r}=\frac{1}{2 \pi \sqrt{L_{1} C_{1}}} \tag{3}
\end{equation*}
$$

Antiresonance condition:

$$
\begin{equation*}
C_{0}-\omega^{2} L_{1} C_{0} C_{1}+C_{1}=0 \Rightarrow f_{a}=\frac{1}{2 \pi} \sqrt{\frac{1}{L_{1} C_{1}}+\frac{1}{L_{1} C_{0}}} \tag{4}
\end{equation*}
$$

$16^{\text {th }}$ ASIAN PHYSICS OLYMPIAD 2015 $3^{\text {rd }}-11^{\text {th }}$ MAY, HANGZHOU, CHINA
B. 2 Measure the AC current I through the PZT plate as a function of the signal frequency f. Draw the $I-f$ curve and find the resonant frequency f_{r} and the antiresonant frequency f_{a}. Calculate the piezoelectric coefficient d accordingly.

Freq (kHz)	$\mathrm{I}(\mathrm{mA})$						
2	0.58	30.5	20.86	32.4	4.82	34.3	1.18
4	1.13	30.6	21.28	32.5	4.06	34.0	1.37
6	1.68	30.7	21.50	32.6	3.37	34.5	1.52
8	2.21	30.8	21.47	32.7	2.76	34.6	1.67
10	2.75	30.9	21.13	32.8	2.20	34.7	1.82
12	3.29	31.0	20.51	32.9	1.73	34.8	1.96
14	3.85	31.1	19.64	33.0	1.29	34.9	2.10
16	4.42	31.2	18.55	33.1	0.94	35	2.23
18	5.03	31.3	17.35	33.2	0.66	36	3.35
20	5.69	31.4	16.06	33.3	0.47	37	4.18
22	6.46	31.5	14.73	33.4	0.36	38	4.82
24	7.39	31.6	13.40	33.5	0.31	39	5.34
26	8.72	31.7	12.10	33.6	0.33	40	5.78
28	11.05	31.8	10.85	33.7	0.38		
30	17.69	31.9	9.65	33.8	0.48		
30.1	18.34	32.0	8.55	33.9	0.60		
30.2	18.99	32.1	7.50	34.0	0.74		
30.3	19.66	32.2	6.52	34.1	0.89		
30.4	20.29	32.3	5.63	34.2	1.04		

Total:3.5
0.2 data table.
0.2 units.
0.3 significant figures.
$0.3 \geq 10$ data points.
$0.3 f$ r.
0.3 fa.
0.30 .1 kHz freq. resolution near $f r$ and fa.
0.5 figure
(0.1: data points,
0.1: units,
0.1: axis label,
0.1: axis ticks label,
0.1: smooth curve).
0.1: unit of d.
1.0 right value of d
(1.0:4.20~4.70)
(0.5:3.95~4.20, 4.70~4.95)

0 otherwise.

$$
d=\sqrt{\left.\frac{f_{r}=30.7 \mathrm{kHz}, f_{a}=33.5 \mathrm{kHz}}{\sqrt{128 f_{r}^{4} l^{2} \rho\left[\frac{\varepsilon_{0} \varepsilon_{r}}{\left(2 \pi f_{a}\right)^{2}-\left(2 \pi f_{r}\right)^{2}}+\frac{1}{32 f_{r}^{2}}\right]}}=4.44 \times 10^{-10} \mathrm{~m} / \mathrm{V}(\text { or } \mathrm{C} / \mathrm{N})\right)}
$$

Experiment C

$16^{\text {th }}$ ASIAN PHYSICS OLYMPIAD 2015
$3^{\text {rd }}-11^{\text {th }}$ MAY, HANGZHOU, CHINA

Experiment D

D. 1	Assume that the length of the aluminum rod is L and the wave velocity is u. Under the free boundary condition, derive the equation for the frequencies f_{n} of the standing (resonant) waves along the long rod. Then derive the equation for the wave velocity u from f_{n}. Consider the aluminum rod as a one dimensional long string with free Boundary condition, then the standing wave condition is $\begin{equation*} L=n \frac{\lambda}{2}, n=1,2,3, \ldots \tag{1} \end{equation*}$ According to $\begin{equation*} \lambda f=u \tag{2} \end{equation*}$ The standing wave frequencies are $\begin{equation*} f_{n}=n \frac{u}{2 L}, n=1,2,3, \ldots \tag{3} \end{equation*}$ Continually changing the vibration frequency, we can find out a series of standing wave frequencies f_{n} and calculate the average distance between two peaks $\overline{\Delta f}$, we have $\begin{equation*} u=2 L \overline{\Delta f} \tag{4} \end{equation*}$	Total:0.6 0.2 eqn.(1). 0.1 eqn.(2). 0.1 eqn.(3). 0.2 eqn.(4). Note: express u in terms of f_{n} instead of Δf is also acceptable.

```
16 th ASIAN PHYSICS OLYMPIAD 2015
3rd}-1\mp@subsup{1}{}{\mathrm{ th }}\mathrm{ MAY, HANGZHOU, CHINA
```



```
164
3rd}-1\mp@subsup{1}{}{\mathrm{ th }}\mathrm{ MAY, HANGZHOU, CHINA
```

D. 3	Identify the resonant peaks likely resulting from the trans Calculate the transverse wave velocity accordingly and error analysis. Attention: there might be irrelevant peaks caused by im the experimental setup, e.g., imperfect free boundary co need to make a judgement and ignore the irrelevant peak analysis.					
	i	$f_{i}(\mathrm{kHz})$	$F_{i}=f_{i+5}-f_{i}(\mathrm{kHz})$		$\left.\Delta F_{\mathrm{i}} \mathrm{kHz}\right)$	
	1	8.81	$\begin{gathered} F_{1}=f_{6}-f_{1} \\ F_{2}=f_{7}-f_{2} \\ F_{3}=f_{8}-f_{3} \\ F_{4}=f_{9}-f_{4} \\ F_{5}=f_{10}-f_{5} \\ \bar{F} \end{gathered}$	$\begin{aligned} & 14.63 \\ & 14.59 \end{aligned}$	ΔF_{1}	0.08
	2	11.81				
	3	14.70			ΔF_{2}	0.12
	4	17.54		14.77	ΔF_{3}	0.06
	5	20.45		$\begin{aligned} & 14.81 \\ & 14.77 \end{aligned}$	ΔF_{4}	0.10
	6	23.44			$\begin{aligned} & \Delta F_{5} \\ & \sigma_{\overline{\Delta \bar{F}}} \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.04 \end{aligned}$
	7	26.40		14.71		
	8	29.47				
	9	32.35				
	10	35.22				

$$
\begin{aligned}
& \overline{\Delta f}=\frac{\bar{F}}{5}=2.94 \mathrm{kHz} \\
& \sigma_{\overline{\Delta f}}=\frac{\sigma_{\overline{\Delta F}}}{5}=\frac{1}{5} \sqrt{\frac{\sum\left(\Delta F_{i}\right)^{2}}{n(n-1)}}=0.01 \mathrm{kHz} \\
& \quad u=2 L \overline{\Delta f}=2.94 \mathrm{~km} / \mathrm{s}
\end{aligned}
$$

$$
\frac{\Delta u}{u}=\sqrt{\left(\frac{\Delta L}{L}\right)^{2}+\left(\frac{\Delta f}{f}\right)^{2}}=0.0035
$$

$$
\Delta u=0.01 \mathrm{~km} / \mathrm{s}
$$

$$
u=(2.94 \pm 0.01) \mathrm{km} / \mathrm{s}
$$

Total:1.4
0.3 successive difference method.

Note: other reasonable
method that
yields correct
result is
acceptable.
0.1 data table.
0.1 significant figures.
0.1 unit.
0.6 right value of transverse wave velocity
(0.6 2.80~3.10 km/s)
(0.2 2.65~2.80
km / s, $\quad 3.10 \sim 3.25$
km/s)
0 otherwise.
0.2 right value of
$\Delta \mathrm{u}$
(0.2:0.01~0.15
km/s)
(0.1:0.15~0.30
km/s)
0 otherwise.

```
16 th ASIAN PHYSICS OLYMPIAD 2015
3 rd}-1\mp@subsup{1}{}{\mathrm{ th }}\mathrm{ MAY, HANGZHOU, CHINA
```



```
16 th ASIAN PHYSICS OLYMPIAD 2015
3rd}-1\mp@subsup{1}{}{\mathrm{ th }}\mathrm{ MAY, HANGZHOU, CHINA
```

D. 5	Compare with the result in D.2, identify the reso the transverse waves. Select the resonant peak longitudinal waves and calculate the longitu accordingly. Carry out the error analysis.				
	$f_{i}(\mathrm{kHz})$	$F_{\mathrm{i}}=f_{\mathrm{i}+3}-f_{\mathrm{i}}(\mathrm{kHz})$		$\Delta F_{\mathrm{i}}(\mathrm{kHz})$	
	1050	$\begin{gathered} F_{1}=f_{4}-f_{1} \\ F_{2}=f_{5}-f_{2} \\ F_{3}=f_{6}-f_{3} \\ \bar{F} \end{gathered}$	$\begin{aligned} & 15.17 \\ & 15.11 \end{aligned}$	ΔF_{1}	0.10
	15.53				
	20.63			ΔF_{2}	0.04
	25.67		14.92	ΔF_{3}	0.15
	30.64		15.07	$\sigma_{\overline{\bar{A}}}$	0.08
	35.55			$\sigma_{\Delta F}$	0.08

$$
\begin{aligned}
& \overline{\Delta f}=\frac{\bar{F}}{3}=5.02 \mathrm{kHz} \\
& \sigma_{\overline{\Delta f}}=\frac{\sigma_{\overline{\Delta \bar{F}}}}{3}=\frac{1}{3} \sqrt{\frac{\sum\left(\Delta F_{i}\right)^{2}}{n(n-1)}}=0.03 \mathrm{kHz} \\
& \quad u=2 L \overline{\Delta f}=5.02 \mathrm{~km} / \mathrm{s} \\
& \frac{\Delta u}{u}=\sqrt{\left(\frac{\Delta L}{L}\right)^{2}+\left(\frac{\Delta f}{f}\right)^{2}}=0.006 \\
& \Delta u=0.03 \mathrm{~km} / \mathrm{s}
\end{aligned}
$$

Thus the longitudinal wave velocity is given by

$$
u=5.02 \pm 0.03 \mathrm{~km} / \mathrm{s}
$$

Total:1.4
0.3 successive difference method.

Note: other

 reasonablemethod that yields correct result is acceptable.
0.1 data table.
0.1 significant figures.
0.1 units.
0.6 right value of longitudinal wave velocity
(0.6:4.70~5.20 km/s)
(0.3:4.50~4.70
km/s,5.20~5.40
km / s)
0 otherwise.
0.2 right value of
Δu
(0.2:0.01~0.20
km/s)
(0.1:0.20~0.40
km/s)
0 otherwise.

$16^{\text {th }}$ ASIAN PHYSICS OLYMPIAD 2015 $3^{\text {rd }}-11^{\text {th }}$ MAY, HANGZHOU, CHINA

Experiment E

E. 1	While changing the frequency of the sound waves produced by transducer, record the peak values monitored by the sensor. Draw a spec containing all measured resonant peaks, similar to that shown in Figure
$f(\mathrm{kHz})$ 5.06 8.01 8.85 10.09 15.05 15.14 17.15 20.11 $I(\mu \mathrm{~A})$ 9.1 6.1 66.0 43.8 34.9 105.2 358.9 57.2 $f(\mathrm{kHz})$ 24.95 25.17 30.27 33.37 35.27 39.23 40.82 41.05 $I(\mu \mathrm{~A})$ 150.9 751 441 432.7 430.1 241.9 242.4 57.7	

Total:1.2
0.1 unit.
0.1 significant figures.
$\mathbf{0 . 1}>10$ data points.
0.2 resonant peaks of the longitudinal waves corresponding to the cut
(0.2: ≥ 4 peaks)
(0.1:2~3peaks)

0 otherwise.
0.1 at least 2 resonant peaks of the transverse waves.
0.3 frequency resolution
0.01 kHz .
0.1 at least one miscellaneous peak.

0.2 spectrum

 containing all measured peaks.E. 2 In the measured spectrum, identify the resonant peaks corresp
existence of the deep cut. Estimate the distance from the spot
the end of the rod that is in contact with the PZT plates.

$f(\mathrm{kHz})$	8.85	17.15	25.17	33.37	40.82
$I(\mu \mathrm{~A})$	66.0	358.9	751	432.7	242.4
$f_{i+2}-f_{i}(\mathrm{kHz})$	16.32	16.22			
15.65					
$\overline{\Delta f}(\mathrm{kHz})$	8.03				

$$
\begin{aligned}
& \overline{\Delta f}=\frac{1}{2} \bar{F}=8.11 \mathrm{kHz} \\
& L_{\text {flaw }}=\frac{u}{2 \overline{\Delta f}}=0.307 \mathrm{~m}
\end{aligned}
$$

