

36th International Physics Olympiad Salamanca, Spain 3–12 July 2005

# Theoretical Question 3: "Quantum effects of gravity"





Th.g. 3: "Guantum effects of gravity". Classical description









Th.g. 3: "Quantum effects of gravity". Classical description



1. Balls with high  $v_z$  will eventually hit the absorber:  $|v_z(z)| < v_{\max}(z)$  (energy conservation)





Th.Q. 3: "Quantum effects of gravity". Classical description



1. Balls with high  $v_z$  will eventually hit the absorber:  $|v_z(z)| < v_{max}(z)$  (energy conservation)

2. One up-down cycle is necessary in order to select velocities  $\rightarrow$  minimum time and length  $t_c, L_c$ 







1. Balls with high  $v_z$  will eventually hit the absorber:  $|v_z(z)| < v_{\max}(z)$  (energy conservation)

2. One up-down cycle is necessary in order to select velocities  $\rightarrow$  minimum time and length  $t_c$ ,  $L_c$ 3. Number of balls at D:  $N_c \propto \int_0^H dz \, 2v_{\text{max}}(z)$ 



Th.Q. 3: "Quantum effects of gravity". Classical description





1. Balls with high  $v_z$  will eventually hit the absorber:  $|v_z(z)| < v_{\max}(z)$  (energy conservation)

2. One up-down cycle is necessary in order to select velocities  $\rightarrow$  minimum time and length  $t_c$ ,  $L_c$ 3. Number of balls at D:  $N_c \propto \int_0^H dz \, 2v_{\text{max}}(z)$ 



Th.Q. 3: "Quantum effects of gravity". Classical description





1. Balls with high  $v_z$  will eventually hit the absorber:  $|v_z(z)| < v_{\max}(z)$  (energy conservation)

2. One up-down cycle is necessary in order to select velocities  $\rightarrow$  minimum time and length  $t_c$ ,  $L_c$ 3. Number of balls at D:  $N_c \propto \int_0^H dz \, 2v_{\text{max}}(z)$ 



Th.g. 3: "Guantum effects of gravity". Quasitual description





- 1. Energy levels  $E_n = E_1 n^{2/3}$ (BS quantization rule — PROVIDED)
- 2. One up-down cycle is necessary in order to select velocities  $\rightarrow$  minimum time and length  $t_c$ ,  $L_c$ 3. Number of balls at D:  $N_c \propto \int_0^H dz \, 2v_{\text{max}}(z)$



Th.G. 3: "Guantum effects of gravity". Quasticat description





- 1. Energy levels  $E_n = E_1 n^{2/3}$ (BS quantization rule — PROVIDED)
- 2. Time necessary to observe the first quantum level (Uncertainty relations:  $\Delta t \gtrsim h/\Delta E \gtrsim h/E_1$ ) 3. Number of balls at D:  $N_c \propto \int_0^H dz \, 2v_{max}(z)$



Th.Q. 3: "Quantum effects of gravity". Quantum description





- 1. Energy levels  $E_n = E_1 n^{2/3}$ (BS quantization rule — PROVIDED)
- 2. Time necessary to observe the first quantum level (Uncertainty relations:  $\Delta t \gtrsim h/\Delta E \gtrsim h/E_1$ )
- 3. Number of neutrons at D:  $N_q = \int_0^H dz \ I(z)$ (intensity proportional to (amplitude)<sup>2</sup>)



Th.Q. 3: "Quantum effects of gravity". Quantum description



# Sketch of experimental data for neutron counting:



#### Only the first quantum sharp increase is analysed



Th.Q. 3: "Quantum effects of gravity".



### Sketch of experimental data for neutron counting:



#### Only the first quantum sharp increase is analysed



Th.Q. 3: "Quantum effects of gravity".



## Sketch of experimental data for neutron counting:



#### Only the first quantum sharp increase is analysed



Th.Q. 3: "Quantum effects of gravity".



# **Objective:**

Compare classical and quantum predictions for neutrons in the Earth's gravitational field

# Main references:

- V. V. Nesvizhevsky et al.,
- "(Measurement of) quantum states of neutrons in the Earth's gravitational field",
- Nature 415 (2002) 297;
  Phys. Rev. D67 (2003) 102002.







# *Precedent:* "Electron interference"

5th Iberoamerican Physics Olympiad, Jaca 2000, Spain

24th International Physics Olympiad, Williamsburgh 1993, U.S.A.





# Concepts involved:

- Energy conservation
- Heisenberg's uncertainty relations
- Energy levels of quantum systems
- Waves: intensity proportional to  $(amplitude)^2$







36th International Physics Olympiad Salamanca, Spain 3–12 July 2005

# Theoretical Question 3: "Quantum effects of gravity"