Solution of Experimental Problem No. 2
 Black box

1. The type of the elements Z

Adjust the oscilloscope to obtain the same gain for the two channels. Use the sine wave from the generator.

Use the circuit in Figure 1 to determine the type of the elements.

We find finally:
$Z_{3}, \quad Z_{1}^{\prime}$ and $Z^{\prime}{ }_{2}$ are resistors and
$Z_{1}^{\prime}=Z_{2}^{\prime}=2 Z_{3}=(10.0 \pm 0.5) \mathrm{k} \Omega$
$Z_{1}, \quad Z_{2}$ and Z_{3}^{\prime} are capacitors, and

Figure 1

$$
C_{1}=C_{2}=\frac{1}{2} C_{3}^{\prime}=(47 \pm 2) \mathrm{nF}
$$

2.

a. The electric circuit of the black box $\mathrm{DD}^{\prime} \mathrm{A}^{\prime}$ is shown in Figure 2.
b. Apply a sine wave signal to connectors D and A'. Connect D and A^{\prime} to channel $1(\mathrm{CH} 1)$ and D^{\prime} and A^{\prime} to channel 2 (CH2).

The ratio $K=\frac{U_{\mathrm{D}^{\prime} \mathrm{A}^{\prime}}}{U_{\mathrm{DA}^{\prime}}}$ is determined from the amplitudes of the signals $U_{\mathrm{DA}^{\prime}}$ và $U_{\mathrm{DA}^{\prime}}$. The phase shift φ can be determined directly from the traces of the signals (or from the Lissajous patterns).

Tabulating K and φ versus f, we get for example:

Figure 2

f	100	150	200	300	330	400	600	800
K		0.29	0.30	0.32	0.33	0.32	0.3	0.28
φ	44	28	16	2	0	-8	-24	-38

The experimental error of f is $\pm 1 \mathrm{~Hz}$, of φ is $\pm 5^{\circ}$ and of K is ± 0.02.
Here are the plots of K and φ as functions of f.

Figure 3

Figure 4

c. The graphs possess a particular point at $f_{0}=330 \pm 1 \mathrm{~Hz}$, at which φ equals zero and K has a maximum of $K=0.33 \pm 0.01 . \varphi$ changes its sign from positive to negative with increasing of the frequency f across f_{0}.

The value of f_{0} may vary from 325 Hz to 335 Hz depending on the set of experiment, due to the deviation in the value of the resistance and capacitance in the set.
d. The phasor diagram for the circuit is shown in Figure 5 , where u_{1} is the instantaneous voltage between D and D^{\prime}, and U_{1} - its amplitude.

Figure 5

We have $\boldsymbol{\operatorname { t a n }} \alpha_{1}=\frac{1}{\omega C R}$ and $U_{1}=I_{1} \sqrt{\left(\frac{R}{2}\right)^{2}+\frac{1}{4 C^{2} \omega^{2}}}$
For the $\mathrm{D}^{\prime} \mathrm{A}^{\prime}$ parallel cicuit, $i_{1}=i_{2}+i_{3}$, and the phasor diagram is shown in Figure 6. u_{2} is in phase with i_{3}.
$\boldsymbol{\operatorname { t a n }} \alpha_{2}=\frac{I_{2}}{I_{3}}=\omega \cdot 2 C \cdot R / 2=\omega C R$. Let u_{2} the voltage between D^{\prime} and A', we have $I_{3}=\frac{U_{2}}{R / 2} ; I_{2}=U_{2} \cdot 2 C . \omega$. Hence:

$$
U_{2}=I_{1} \cdot \frac{1}{\sqrt{\frac{1}{\left(\frac{R}{2}\right)^{2}}+4 C^{2} \omega^{2}}}
$$

Figure 6

By combining Figure 5 and Figure 6, we obtain Figure 7, with $u=u_{1}+u_{2}$ being the instantaneous voltage between D và A^{\prime}.

Figure 7

For $\omega=2 \pi f=\frac{1}{C R}, \boldsymbol{\operatorname { t a n }} \alpha_{1}=\frac{1}{\omega C R}=\boldsymbol{\operatorname { t a n }} \alpha_{2}=\omega C R$. In this condition, u_{1}, u_{2} and u are in phase, so that $\varphi=\alpha_{2}-\alpha_{1}=0$. Hence $K=\frac{U_{D^{\prime} A^{\prime}}}{U_{D A^{\prime}}}=\frac{U_{2}}{U_{1}+U_{2}}$. Substituing $\omega=\frac{1}{C R}$ into U_{1} and U_{2}, we obtain $K=\frac{1}{3}$.

That is, for $f_{0}=\frac{\omega}{2 \pi}=\frac{1}{2 \pi R C}=\frac{1}{2 \pi \cdot 10^{4} \cdot 48 \cdot 10^{-9}}=331 \mathrm{~Hz}, K=\frac{1}{3}=0.33, \varphi=0$, which is observed in the experiment.

For $\omega \neq \frac{1}{C R}, u_{1}$ and u_{2} are out of phase, and K has values smaller than $1 / 3$.

