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Solution- Theoretical Question 1 
A Swing with a Falling Weight 

Part A 
(a) Since the length of the string θRsL +=  is constant, its rate of change must be 

zero. Hence we have 
0=+ θ&& Rs                                     (A1)*1 

(b) Relative to O, Q moves on a circle of radius R with angular velocity θ& , so 

tstRvQ ˆˆ &&r
−== θ                                (A2)* 

(c) Refer to Fig. A1. Relative to Q, the displacement of P in a time interval ∆t 
is ttsrstsrsr ∆θ∆θ∆∆ ]ˆ)ˆ)([(ˆ)()ˆ)(( &&r

+−=+−=′ . It follows 
tsrsv ˆˆ &&r

+−=′ θ                                 (A3)* 
 
 
 
 
 
 
 
 
 
(d) The velocity of the particle relative to O is the sum of the two relative velocities 

given in Eqs. (A2) and (A3) so that 

rstRtsrsvvv Q ˆˆ)ˆˆ( θθθ &&&&rrr
−=++−=+′=              (A4)* 

(e) Refer to Fig. A2. The ( t̂− )-component of the velocity change vr∆  is given by  
tvvvt ∆θθ∆∆ &r

==⋅− )ˆ( . Therefore, the t̂ -component of the acceleration 
tva ∆∆ /rr

=  is given by θ&vat −=⋅ ˆˆ . Since the speed v of the particle is θ&s  
according to Eq. (A4), we see that the t̂ -component of the particle’s 
acceleration  at P is given by 

2)(ˆ θθθθ &&&&r ssvta −=−=−=⋅                        (A5)* 

 
 
 
 
 
 

                                                 
1 An equation marked with an asterisk contains answer to the problem. 
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Note that, from Fig. A2, the radial component of the acceleration may also be 
obtained as dtsddtdvra /)(/ˆ θ&r

−=−=⋅ . 
 
(f) Refer to Fig. A3. The gravitational potential energy of the particle is given by 

mghU −= . It may be expressed in terms of s and θ  as 
]sin)cos1([)( θθθ sRmgU +−−=                  (A6)* 

 
 
 
 
 
 
 
 
(g) At the lowest point of its trajectory, the particle’s gravitational potential energy  

U must assume its minimum value Um. If the particle’s mechanical energy  E 
were equal to  Um, its kinetic energy would be zero. The particle would then 
remain stationary and be in the static equilibrium state shown in Fig. A4. Thus, 
the potential energy reaches its minimum value when θ  = π /2 or s = L−πR /2. 

 
 
 
 
 
 
 
 
 

From Fig. A4 or Eq. (A6), the minimum potential energy is then 

)]2/([)
2

( RLRmgUU m ππ −+−== .               (A7) 

Initially, the total mechanical energy E is 0. Since E is conserved, the speed  vm 
of the particle at the lowest point of its trajectory must satisfy 

mm UmvE +== 2
2
10 .                           (A8) 

From Eqs. (A7) and (A8), we obtain 

)]2/([2/2 RLRgmUv mm π−+=−= .          (A9)* 
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Part B 
(h) From Eq. (A6), the total mechanical energy of the particle may be written as 

]sin)cos1([
2
1)(

2
10 22 θθθ sRmgmvUmvE +−−=+==    (B1) 

From Eq. (A4), the speed v is equal to θ&s . Therefore, Eq. (B1) implies 

]sin)cos1([2)( 22 θθθ sRgsv +−== &                  (B2) 

Let T be the tension in the string. Then, as Fig. B1 shows, the t̂ -component of 
the net force on the particle is –T + mg sin θ . From Eq. (A5), the tangential 
acceleration of the particle is )( 2θ&s− . Thus, by Newton’s second law, we have 

θθ sin)( 2 mgTsm +−=− &                            (B3) 
 
 
 
 
 
 
 
 
 
 

According to the last two equations, the tension may be expressed as 

))(sin(2

)sin)]((
2
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2
[tan2

]sin3)cos1(2[)sin(

21
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yy
s
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s
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−=

−−=

+−=+= &

        (B4) 

The functions )2/tan(1 θ=y  and 2/)/(32 RLy −= θ  are plotted in Fig B2. 
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From Eq. (B4) and Fig. B2, we obtain the result shown in Table B1. The angle at 
which .y2 = y1 is called sθ ( πθπ 2<< s ) and is given by 

2
tan)(

2
3 s

s R
L θ

θ =−                          (B5) 

or, equivalently, by 

2
tan

3
2 s

sR
L θ

θ −=                           (B6) 

Since the ratio L/R is known to be given by 

)
8

(
2
1tan

3
2)

8
(

16
cot

3
2

8
9 ππππππ +−+=+=

R
L     (B7) 

one can readily see from the last two equations that 8/9πθ =s . 

 
 
 
 
 
 
 
 
 

Table B1 shows that the tension T must be positive (or the string must be 
taut and straight) in the angular range 0<θ  < θ s. Once θ  reaches θ s, the tension 
T becomes zero and the part of the string not in contact with the rod will not be 
straight afterwards. The shortest possible value smin for the length s of the line 
segment QP therefore occurs at sθθ = and is given by 

RRRRLs s 352.3
16

cot
3

2)
8

9
16

cot
3
2

8
9(min ==−+=−= ππππθ    (B8) 

When sθθ = , we have T = 0 and Eqs. (B2) and (B3) then leads to 

θsin2 gsv −= . Hence the speed  v s is 

Table B1 

 )( 21 yy −  θsin tension T 

πθ <<0  positive positive positive 
πθ =  + ∞ 0 positive 

sθθπ <<  negative negative positive 

sθθ =  zero negative zero 
πθθ 2<<s  positive negative negative 
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gR

gRgRgsv ss

133.1
16

cos
3

4
8

sin
16

cot
3

2sinmin

=

==−= πππθ
      (B9)* 

(i) When sθθ ≥ , the particle moves like a projectile under gravity. As shown in Fig. 
B3, it is projected with an initial speed  v s from the position ),( ss yxP =  in a 
direction making an angle )2/3( sθπφ −= with the y-axis. 

The speed Hv of the particle at the highest point of its parabolic trajectory is 
equal to the y-component of its initial velocity when projected. Thus, 

gRgRvv ssH 4334.0
8

sin
16

cos
3

4)sin( ==−= πππθ      (B10)* 

The horizontal distance H traveled by the particle from point P to the point of 
maximum height is 

R
g

v
g

v
H sss 4535.0

4
9sin

22
)(2sin 22

==
−

= ππθ
              (B11) 

 
 
 
 
 
 
 
 
 
 
The coordinates of the particle when sθθ = are given by 

RsRsRx sss 358.0
8

sin
8

cossincos minmin =+−=−= ππθθ      (B12) 

RsRsRy sss 478.3
8

cos
8

sincossin minmin −=−−=+= ππθθ     (B13) 

Evidently, we have )(|| HRys +> . Therefore the particle can indeed reach its 
maximum height without striking the surface of the rod. 

Part C 
(j) Assume the weight is initially lower than O by h as shown in Fig. C1. 
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When the weight has fallen a distance D and stopped, the law of conservation of 
total mechanical energy as applied to the particle-weight pair as a system leads 
to 

)( DhMgEMgh +−′=−                           (C1) 
where E′ is the total mechanical energy of the particle when the weight has 
stopped. It follows 

MgDE =′                                      (C2) 
Let Λ be the total length of the string. Then, its value at θ = 0 must be the same 
as at any other angular displacement θ. Thus we must have 

)()
2

(
2

DhRshRL ++++=++= πθπΛ              (C3) 

Noting that D = α L and introducing ℓ = L−D, we may write 
LDL )1( α−=−=l                              (C4) 

From the last two equations, we obtain 
θθ RRDLs −=−−= l                           (C5) 

After the weight has stopped, the total mechanical energy of the particle 
must be conserved. According to Eq. (C2), we now have, instead of Eq. (B1), 
the following equation: 

]sin)cos1([
2
1 2 θθ sRmgmvMgDE +−−==′          (C6) 

The square of the particle’s speed is accordingly given by 

]sin)cos1[(22)( 22 θθθ
R
sgR

m
MgDsv +−+== &      .  (C7) 

Since Eq. (B3) stills applies, the tension T of the string is given by 
)(sin 2θθ &smmgT −=+−                           (C8) 

From the last two equations, it follows 

]sin)(
2
3)cos1([2

]sin3)cos1(22[

)sin( 2

θθθ

θθ

θθ

−+−+=

+−+=

+=

RmR
MD

s
mgR

sRD
m
M

s
mg

gsmT

l

&

         (C9) 

where Eq. (C5) has been used to obtain the last equality. 
We now introduce the function 

θθθθ sin)(
2
3cos1)( −+−=

R
f l                   (C10) 

From the fact ℓ = (L−D) >> R, we may write 
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)sin(1cossin
2
31)( φθθθθ −+=−+≈ A

R
f l          (C11) 

where we have introduced 

2)
2
3(1

R
A l+= ,   

2

1

)
2
3(1

2
3

tan

R

R
l

l

+
= −φ          (C12) 

From Eq. (C11), the minimum value of f(θ) is seen to be given by 
2

min )
2
3(111

R
Af l+−=−=                    (C13) 

Since the tension T remains nonnegative as the particle swings around the rod, 
we have from Eq. (C9) the inequality 

0)
2
3(11)( 2

min ≥+−+
−

=+
RmR

LMf
mR
MD ll           (C14) 

or 

)
2
3()()

2
3(1)(1)( 2

RmR
M

RmR
M

mR
ML llll +≈++≥+          (C15) 

From Eq. (C4), Eq. (C15) may be written as 

)1)](
2
3()[(1)( α−+≥+

R
L

mR
ML

mR
ML                     (C16) 

Neglecting terms of the order (R/L) or higher, the last inequality leads to 

m
M

m
M

L
R

R
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mR
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mR
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mR
ML

3
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The critical value for the ratio D/L is therefore 

)
3
21(

1

m
Mc

+
=α                                 (C18)* 
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Solution- Theoretical Question 2 
A Piezoelectric Crystal Resonator under an Alternating Voltage 

Part A 
(a) Refer to Figure A1. The left face of the rod moves a distance v∆t while the 

pressure wave travels a distance u∆t with ρ/Yu = . The strain at the left face is 

u
v

tu
tvS −=−==

∆
∆∆

l
l                             (A1a)*1 

From Hooke’s law, the pressure at the left face is 

uv
u
vYYSp ρ==−=                              (A1b)* 

 
 
 
 
 
 
 
 
 
(b) The velocity v is related to the displacement ξ as in a simple harmonic motion 

(or a uniform circular motion, as shown in Figure A2) of angular frequency 
ku=ω . Therefore, if )(sin),( 0 tuxktx −= ξξ , then 

)(cos),( 0 tuxkkutxv −−= ξ .                         (A2)* 
The strain and pressure are related to velocity as in Problem (a). Hence, 

)(cos/),(),( 0 tuxkkutxvtxS −=−= ξ                  (A3)* 

)(cos),(
)(cos),(),(

0

0
2

tuxkkYtxYS
tuxkuktxuvtxp

−−=−=
−−==

ξ
ξρρ              (A4)* 

------------------------------------------------------------------------------------------------- 
Alternatively, the answers may be obtained by differentiations: 

)(cos),( 0 tuxkku
t

txv −−== ξ
∆
ξ∆ , 

)(cos),( 0 tuxkk
x

txS −== ξ
∆

ξ∆ , 

)(cos),( 0 tuxkkY
x

Ytxp −−=−= ξ
∆

ξ∆ . 

------------------------------------------------------------------------- 
                                                 
1 An equations marked with an asterisk contains answer to the problem. 
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Part B 
(c) Since the angular frequency ω and speed of propagation u are given, the 

wavelength  is given by λ = 2π / k with k = ω / u. The spatial variation of the 
displacement ξ is therefore described by 

)
2

(cos)
2

(sin)( 21
bxkBbxkBxg −+−=                    (B1) 

Since the centers of the electrodes are assumed to be stationary, g(b/2) = 0. This 
leads to B2 = 0. Given that the maximum of g(x) is 1, we have A = ±1 and 

)
2

(sin)( bx
u

xg −±= ω                                 (B2)* 

Thus, the displacement is 

tbx
u

tx ωωξξ cos)
2

(sin2),( 0 −±=                        (B3) 

(d) Since the pressure p (or stress T ) must vanish at the end faces of the quartz slab 
(i.e., x = 0 and x = b), the answer to this problem can be obtained, by analogy, 
from the resonant frequencies of sound waves in an open pipe of length b. 
However, given that the centers of the electrodes are stationary, all even 
harmonics of the fundamental tone must be excluded because they have antinodes, 
rather than nodes, of displacement at the bisection plane of the slab. 

Since the fundamental tone has a wavelength  λ = 2b, the fundamental 
frequency is given by )2/(1 buf = . The speed of propagation u is given by 

3
3

10
1045.5

1065.2
1087.7 ×=

×
×==

ρ
Yu m/s              (B4) 

and, given that b =1.00×10-2 m, the two lowest standing wave frequencies are 

)kHz(273
21 ==
b

uf , )kHz(818
2
33 13 ===

b
uff       (B5)* 

------------------------------------------------------------------------------------------------- 
[Alternative solution to Problems (c) and (d)]: 

A longitudinal standing wave in the quartz slab has a displacement node at x 
= b/2. It may be regarded as consisting of two waves traveling in opposite 
directions. Thus, its displacement and velocity must have the following form 

)]
2

(sin)
2

([sin

cos)
2

(sin2),(

utbxkutbxk

tbxktx

m

m

+−+−−=

−=

ξ

ωξξ
               (B6) 

tbxk

utbxkutbxkkutxv

m

m

ωωξ

ξ

sin)
2

(sin2

)]
2

(cos)
2

([cos),(

−−=

+−−−−−=
           (B7) 

where ω  = k u and the first and second factors in the square brackets represent 
waves traveling along the +x and –x directions, respectively. Note that Eq. (B6) is 
identical to Eq. (B3) if we set ξ m = ±ξ 0. 



IPHO 2003  Theoretical Question 2 ( Solution )      (2003/07/17)    p.3/5 

For a wave traveling along the –x direction, the velocity v must be replaced 
by –v in Eqs. (A1a) and (A1b) so that we have 

u
vS −=  and uvp ρ=     (waves traveling along +x)       (B8) 

u
vS =   and uvp ρ−=    (waves traveling along –x)       (B9) 

As in Problem (b), the strain and pressure are therefore given by 

tbxkk

utbxkutbxkktxS

m

m

ωξ

ξ

cos)
2

(cos2

)]
2

(cos)
2

(cos[),(

−=

+−−−−−−=
          (B10) 

tbxku

utbxkutbxkutxp

m

m

ωωξρ

ωξρ

cos)
2

(cos2

)]
2

(cos)
2

([cos),(

−−=

+−+−−−=
        (B11) 

Note that v, S, and p may also be obtained by differentiating ξ as in Problem (b). 
The stress T or pressure p must be zero at both ends (x = 0 and x = b) of the 

slab at all times because they are free. From Eq. (B11), this is possible only 
if 0)2/cos( =kb or 

L,5,3,1,2
==== nnb

f
fb

u
kb π

λ
πω           (B12) 

In terms of wavelength λ, Eq. (B12) may be written as 

L,5,3,1,2 == n
n
bλ .                     (B13) 

The frequency is given by 

L,5,3,1,
22

==== nY
b
n

b
nuuf

ρλ
.          (B14) 

This is identical with the results given in Eqs. (B4) and (B5). 
--------------------------------------------------------------------------------------------------- 

(e) From Eqs. (5a) and (5b) in the Question, the piezoelectric effect leads to the 
equations 

)( EdSYT p−=                                  (B15) 

E
d

YSYd
T

p
Tp )1(

2

ε
εσ −+=                          (B16) 

Because x = b/2 must be a node of displacement for any longitudinal standing 
wave in the slab, the displacement ξ and strain S must have the form given in Eqs. 
(B6) and (B10), i.e., with ku=ω , 

)cos()
2

(sin),( φωξξ +−= tbxktx m                     (B17) 

)cos()
2

(cos),( φωξ +−= tbxkktxS m                    (B18) 

where a phase constant φ is now included in the time-dependent factors. 
By assumption, the electric field E between the electrodes is uniform and 
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depends only on time: 

h
tV

h
tVtxE m ωcos)(),( == .                           (B19) 

Substituting Eqs. (B18) and (B19) into Eq. (B15), we have 

]cos)cos()
2

(cos[ tV
h

d
tbxkkYT m

p
m ωφωξ −+−=      (B20) 

The stress T must be zero at both ends (x = 0 and x = b) of the slab at all times 
because they are free. This is possible only if φ  = 0 and 

h
Vdkbk m

pm =
2

cosξ                                 (B21) 

Since φ  = 0, Eqs. (B16), (B18), and (B19) imply that the surface charge density 
must have the same dependence on time t and may be expressed as 

txtx ωσσ cos)(),( =                                 (B22) 
with the dependence on x given by 

h
Vd

Ybxkkb
d

Y
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)]1()
2
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2
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2
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εξσ
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−+−=

        (B23)* 

(f) At time t, the total surface charge Q(t) on the lower electrode is obtained by 
integrating ),( txσ in Eq. (B22) over the surface of the electrode. The result is 
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where  

h
bwC Tε=0 ,   3

222
2 1082.9

06.427.1
10)25.2( −

−

×=
×

×
==

T

pd
Y

ε
α   (B25)* 

(The constant α is called the electromechanical coupling coefficient.) 
Note: The result C 0 = ε T bw / h can readily be seen by considering the static 

limit k = 0 of Eq. (5) in the Question. Since xx ≈tan  when x << 1, we have 

0
22

0
0

)]1([)(/)(lim CCtVtQ
k

=−+≈
→

αα              (B26) 

Evidently, the constant C 0 is the capacitance of the parallel-plate capacitor formed 
by the electrodes (of area bw) with the quartz slab (of thickness h and permittivity 
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ε T) serving as the dielectric medium. It is therefore given by ε T bw / h. 
                 (B47)* 
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Solution- Theoretical Question 3 
Part A 

Neutrino Mass and Neutron Decay 
(a) Let ),( 2

ee qcEc r , ),( 2
pp qcEc r , and ),( 2

vv qcEc r be the energy-momentum 

4-vectors of the electron, the proton, and the anti-neutrino, respectively, in the rest 
frame of the neutron. Notice that νν qqqEEE pepe

rrr ,,,,,  are all in units of mass. 

The proton and the anti-neutrino may be considered as forming a system of total 
rest mass cM , total energy cEc2 , and total momentum cqcr . Thus, we have 

vpc EEE += ,      vpc qqq rrr
+= ,     222

ccc qEM −=         (A1) 

Note that the magnitude of the vector cqr  is denoted as qc. The same convention 
also applies to all other vectors. 

Since energy and momentum are conserved in the neutron decay, we have 
nec mEE =+                                      (A2) 

ec qq rr
−=                                         (A3) 

When squared, the last equation leads to the following equality 

2222
eeec mEqq −==                                 (A4) 

From Eq. (A4) and the third equality of Eq. (A1), we obtain 

2222
eecc mEME −=−                                (A5) 

With its second and third terms moved to the other side of the equality, Eq. (A5) 
may be divided by Eq. (A2) to give 

)(1 22
ec

n
ec mM

m
EE −=−                            (A6) 

As a system of coupled linear equations, Eqs. (A2) and (A6) may be solved to give 

)(
2

1 222
cen

n
c Mmm

m
E +−=                           (A7) 

)(
2

1 222
cen

n
e Mmm

m
E −+=                           (A8) 

Using Eq. (A8), the last equality in Eq. (A4) may be rewritten as 

))()()((
2

1

)2()(
2

1 22222

cencencencen
n

encen
n

e

MmmMmmMmmMmm
m

mmMmm
m

q

−−+−−+++=

−−+=
 (A9) 

Eq. (A8) shows that a maximum of eE  corresponds to a minimum of 2
cM . 

Now the rest mass cM  is the total energy of the proton and anti-neutrino pair in 

their center of mass (or momentum) frame so that it achieves the minimum 



IPHO 2003  Solution − Theoretical Question 3     (prelimary)         p.2/5 

vp mmM +=                                     (A10) 

when the proton and the anti-neutrino are both at rest in the center of mass frame. 
Hence, from Eqs. (A8) and (A10), the maximum energy of the electron E = c2Ee is 

[ ] MeV29.1MeV292569.1)(
2

222
2

max ≈≈+−+= vpen
n

mmmm
m
cE   (A11)*1 

When Eq. (A10) holds, the proton and the anti-neutrino move with the same 
velocity vm of the center of mass and we have 
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+==== ==== |)(|)(|)(|)(
maxmaxmax

    (A12) 

where the last equality follows from Eq. (A3). By Eqs. (A7) and (A9), the last 
expression in Eq. (A12) may be used to obtain the speed of the anti-neutrino when 
E = Emax. Thus, with M = mp+mv, we have 

00127.000126538.0
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------------------------------------------------------------------------------------------------------ 
[Alternative Solution] 

Assume that, in the rest frame of the neutron, the electron comes out with 
momentum eqcr  and energy c2Ee, the proton with pqcr  and pEc2 , and the 

anti-neutrino with vqcr  and vEc2 . With the magnitude of vector αqr  denoted by 
the symbol qα, we have 

222
ppp qmE += ,   222

vvv qmE += ,   222
eee qmE +=            (1A) 

Conservation of energy and momentum in the neutron decay leads to 

envp EmEE −=+                                  (2A) 

 evp qqq rrr
−=+                                     (3A) 

When squared, the last two equations lead to 

222 )(2 envpvp EmEEEE −=++                          (4A) 

22222 2 eeevpvp mEqqqqq −==⋅++
rr                       (5A) 

Subtracting Eq. (5A) from Eq. (4A) and making use of Eq. (1A) then gives 

                                                 
1 An equation marked with an asterisk contains answer to the problem. 
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enenvpvpvp EmmmqqEEmm 2)(2 2222 −+=⋅−++
rr           (6A) 

or, equivalently, 

)(22 2222
vpvpvpenen qqEEmmmmEm rr

⋅−−−−+=             (7A) 

If θ  is the angle between pqr  and vqr , we have vpvpvp qqqqqq ≤=⋅ θcosrr  so that 
Eq. (7A) leads to the relation 

)(22 2222
vpvpvpenen qqEEmmmmEm −−−−+≤             (8A) 

Note that the equality in Eq. (8A) holds only if θ = 0, i.e., the energy of the electron 
c2Ee takes on its maximum value only when the anti-neutrino and the proton move in 
the same direction. 

Let the speeds of the proton and the anti-neutrino in the rest frame of the neutron 
be pcβ  and vcβ , respectively. We then have ppp Eq β=  and vvv Eq β= . As 
shown in Fig. A1, we introduce the angle φ v ( 2/0 πφ <≤ v ) for the antineutrino by 

vvv mq φtan= ,   vvvvv mqmE φsec22 =+= ,   vvvv Eq φβ sin/ ==    (9A) 

 
 
 
 
 

Similarly, for the proton, we write, with 2/0 πφ <≤ p , 

ppp mq φtan= ,  ppppp mqmE φsec22 =+= ,  pppp Eq φβ sin/ ==   (10A) 

Eq. (8A) may then be expressed as 

)
coscos

sinsin1
(22 2222

vp

vp
vpvpenen mmmmmmEm

φφ
φφ−

−−−+≤           (11A) 

The factor in parentheses at the end of the last equation may be expressed as 
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)cos(1
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 (12A) 

and clearly assumes its minimum possible value of 1 when φ p = φ v, i.e., when the 
anti-neutrino and the proton move with the same velocity so that β p = β v. Thus, it 
follows from Eq. (11A) that the maximum value of Ee is 

Ev 

mv 

qv 

φ v 

Figure A1 
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and the maximum energy of the electron E = c2Ee is 

MeV29.1MeV292569.1)( max
2

max ≈≈= eEcE                  (14A)* 

When the anti-neutrino and the proton move with the same velocity, we have, 
from Eqs. (9A), (10A), (2A) ,(3A), and (1A), the result 
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ββ            (15A) 

Substituting the result of Eq. (13A) into the last equation, the speed vm of the 
anti-neutrino when the electron attains its maximum value Emax is, with M = mp+mv, 
given by 
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------------------------------------------------------------------------------------------------------ 
Part B 

Light Levitation 
(b) Refer to Fig. B1. Refraction of light at the spherical surface obeys Snell’s law and 

leads to 
tin θθ sinsin =                                      (B1) 

Neglecting terms of the order (δ /R)3or higher in sine functions, Eq. (B1) becomes 
tin θθ ≈                  (B2) 

For the triangle ∆FAC in Fig. B1, we have 
iiiit nn θθθθθβ )1( −=−≈−=        (B3) 

Let 0f  be the frequency of the incident light. If 

pn  is the number of photons incident on the plane 

surface per unit area per unit time, then the total 
number of photons incident on the plane surface per 
unit time is 2πδpn . The total power P of photons 

incident on the plane surface is ))(( 0
2 hfn pπδ , 

with h being Planck’s constant. Hence, 
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Fig. B1 
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0
2hf
Pn p

πδ
=                  (B4) 

The number of photons incident on an annular disk of inner radius r and outer 
radius r +dr on the plane surface per unit time is )2( rdrn p π , where 

ii RRr θθ ≈= tan . Therefore, 

iipp dRnrdrn θθππ )2()2( 2≈                            (B5) 

The z-component of the momentum carried away per unit time by these photons 
when refracted at the spherical surface is 
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so that the z-component of the total momentum carried away per unit time is 
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                (B7) 

where imim R
θδθ ≈=tan . Therefore, by the result of Eq. (B5), we have 
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The force of optical levitation is equal to the sum of the z-components of the forces 
exerted by the incident and refracted lights on the glass hemisphere and is given by 
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Equating this to the weight mg of the glass hemisphere, we obtain the minimum 
laser power required to levitate the hemisphere as 
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