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Solution- Theoretical Question 1
A Swing with a Falling Weight

Part A

(a) Since the length of the string L =s+ R is constant, its rate of change must be
zero. Hence we have
S+RO=0 (A1)*!

(b) Relative to O, O moves on a circle of radius R with angular velocity 8, so
Vo =ROI =-3si (A2)*

(c) Refer to Fig. Al. Relative to Q, the displacement of P in a time interval A¢
is AF' =(sAO)(—F) + (As)i =[(sO)(—F) + $7]At . Tt follows
V' =—sOF+51 (A3)*

Figure A1l

(d) The velocity of the particle relative to O is the sum of the two relative velocities
given in Egs. (A2) and (A3) so that

§=§’+§Q:(—séf+§f)+R9?=—s9f (Ad)*

(e) Refer to Fig. A2. The (—7 )-component of the velocity change A4v is given by
(—1)- AV = vAO = vO At . Therefore, the / -component of the acceleration
d=AV/At isgivenby 7-a=—-v6 . Since the speed v of the particle is s0
according to Eq. (A4), we see that the 7 -component of the particle’s
acceleration at P is given by

G-t =—v0=—(s0)0 =—-s0* (A5)*
\A /_i
v A0
Q/. \ ' Av
Figure A2 TN
1gure S N VAV

' An equation marked with an asterisk contains answer to the problem.
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Note that, from Fig. A2, the radial component of the acceleration may also be
obtained as -7 =—dv/dt =—d(s0)/dt .

(f) Refer to Fig. A3. The gravitational potential energy of the particle is given by
U = —mgh . It may be expressed in terms of s and & as

U(@)=-mg[R(1—-cosf)+ssind] (A6)*

Figure A3 h

P
(g) At the lowest point of its trajectory, the particle’s gravitational potential energy

U must assume its minimum value U,,. If the particle’s mechanical energy E
were equal to U, its kinetic energy would be zero. The particle would then
remain stationary and be in the static equilibrium state shown in Fig. A4. Thus,

the potential energy reaches its minimum value when 6 = z/2 or s = L— 7R /2.

Figure A4

O
P (at rest)
From Fig. A4 or Eq. (A6), the minimum potential energy is then
U, = U(%) =—mg[R+L—(7R/2)]. (A7)

Initially, the total mechanical energy E is 0. Since E is conserved, the speed v,

of the particle at the lowest point of its trajectory must satisfy
E:O:%mv,zn—i-Um. (A8)

From Egs. (A7) and (A8), we obtain

Vi == 2U,, m =2g[R+(L-7R/2)]. (A9)*
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Part B
(h) From Eq. (A6), the total mechanical energy of the particle may be written as
E=0-= %mvz LU®©) = %va —mg[R(1-cosO) +ssinf]  (B)
From Eq. (A4), the speed v is equal tos@ . Therefore, Eq. (B1) implies
v? =(s0)% =2g[R(1—-cos8) + s sin 6] (B2)

Let T be the tension in the string. Then, as Fig. B1 shows, the 7 -component of
the net force on the particle is =7+ mg sin €. From Eq. (AS5), the tangential
acceleration of the particle is (—592) . Thus, by Newton’s second law, we have

m(—séz) =-T +mgsind (B3)

>

Figure B1

According to the last two equations, the tension may be expressed as
T =m(s0 >+ gsin@) = "E[2R(1 - cos 0) + 3ssin 0]
s

_ 2mgR

[tang _ %(9 - %)](sin 0) (B4)

2mgR .
= "5 (71~ 32)(sin0)

The functions y; =tan(@/2) and y, =3(6@—-L/R)/2 are plotted in Fig B2.

ty Figure B2
30

20

10

0




IPHO 2003  Solution — Theoretical Question 1 (2003/07/12) p.4/7

From Eq. (B4) and Fig. B2, we obtain the result shown in Table B1. The angle at
which .y, =y is called 6, (7 <68, <2x) and is given by

3 L 4

E(HS _E) = tanjs (BS)
or, equivalently, by

L 2. 0

R 0, 3 tan 5 (B6)
Since the ratio L/R is known to be given by

L 97 2 V4 T, 2 1 V3

== 4 Zcot—= =)—Ztan— = B7

2 8+3C016 (7z+8) 3)an2(7z+8) (B7)

one can readily see from the last two equations that 8, =97 /8.

Table Bl
(1 —¥2) sin@ tension 7’
0<O0<rm positive positive positive
O=rx + o0 0 positive
<0<, negative negative positive
0 =0, Zero negative Zero
0, <0<2r positive negative negative

Table B1 shows that the tension 7' must be positive (or the string must be
taut and straight) in the angular range 0<@ < 6;. Once @ reaches 6, the tension
T becomes zero and the part of the string not in contact with the rod will not be
straight afterwards. The shortest possible value sy, for the length s of the line
segment QP therefore occurs at @ = 6 and is given by

Or 2 T 97, 2R V4
Smin = L = ROy = R(=g-+ Teotye—=07) = Z=cot 7o =3.352R  (BY)

Whend = 6., we have T'=0 and Eqgs. (B2) and (B3) then leads to

v 2= —gssin @ . Hence the speed v is
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Vg = /= &S min SINO, =\/gcot%sin% =\/g cos% (BY)*
=1.133,/gR
(1) When 6 > 6, the particle moves like a projectile under gravity. As shown in Fig.
B3, it is projected with an initial speed v, from the position P =(x,,y,) ina
direction making an angle ¢ = (37 /2 -6, ) with the y-axis.
The speed v of the particle at the highest point of its parabolic trajectory is

equal to the y-component of its initial velocity when projected. Thus,

vy = vgsin(@; —x) = % COS%Sin% =0.4334,/gR (B10)*

The horizontal distance H traveled by the particle from point P to the point of

maximum height is

_visin2(6,-7) v . 9z

H s1nT =0.4535R (B11)

2g 2g

Figure B3

’
7
’

The coordinates of the particle when 6 = 6, are given by

X, =Rcosl, — i, SInG, = —R cos%+smin sin% =0.358R (B12)
Yy =Rsin@g + s, cosf, =—R sin%—smin COS% =-3.478R (B13)

Evidently, we have | y,| > (R+ H) . Therefore the particle can indeed reach its

maximum height without striking the surface of the rod.

Part C

(j) Assume the weight is initially lower than O by /4 as shown in Fig. C1.

Figure C1
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When the weight has fallen a distance D and stopped, the law of conservation of
total mechanical energy as applied to the particle-weight pair as a system leads
to

—Mgh=E'"—Mg(h+ D) (ChH
where E' is the fotal mechanical energy of the particle when the weight has
stopped. It follows

E'=MgD (C2)

Let A be the total length of the string. Then, its value at = 0 must be the same

as at any other angular displacement €. Thus we must have

A:L+%R+h:s+R(0+%)+(h+D) (C3)
Noting that D = ¢ L and introducing ¢ = L—D, we may write

(=L-D=(1-a)L (C4)
From the last two equations, we obtain

s=L—-D-RO=(—-RO (Cs)

After the weight has stopped, the total mechanical energy of the particle
must be conserved. According to Eq. (C2), we now have, instead of Eq. (B1),

the following equation:

E'= MgD :%mvz — mg[R(1-cos0) +s sin 0] (C6)
The square of the particle’s speed is accordingly given by
V2 = (s6)2 = 2M8D +2gR[(1—c059)+% sin 0] . (CT)
m

Since Eq. (B3) stills applies, the tension 7 of the string is given by
—T+mgsin@ = m(-s6?) (C8)

From the last two equations, it follows

T =m(s0 >+ gsinf)

_M82M &y 5 R(1-cos) +3ssin O] (C9)
S m

_ 2mgR _MD 3 3.0 )

= [mR+(1 cos9)+2(R 0)sin ]

where Eq. (C5) has been used to obtain the last equality.

We now introduce the function
f(0)=1—c0s6‘+%(%—9)sin9 (C10)

From the fact £ = (L—D) >> R, we may write
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FO) =142 45in 0 —cos0 =1+ Asin(0 - ¢)

where we have introduced

30

A=1+3C 5?2 potan! 2R

o G
2R

From Eq. (C11), the minimum value of f{6) is seen to be given by

/ 37,2
fmin =l-4=1- 1+(§E)

p.7/7

(C11)

(C12)

(C13)

Since the tension 7' remains nonnegative as the particle swings around the rod,

we have from Eq. (C9) the inequality

MD M(L-1)
R min =T e o

ELyer > s 1+ o)t = A0+ (2o

From Eq. (C4), Eq. (C15) may be written as

30

250
ZR) -

1+(

or

ML ML 3L
E+L 2 [+ GRli-a)

Neglecting terms of the order (R/L) or higher, the last inequality leads to

ML 3L 2R
—)+1 ——)-1 1-=—
a > 1- (mR) _ (2R) _ 3L ~ 1
N ML 3L ML 3L 2M 2M
AL et AL Sbyoo M o 127
(mR)+(2R) (mR)+(2R) 3m * * 3m

The critical value for the ratio D/L is therefore

1
ac:—
(1+72 )
3m

(C14)

(C15)

(C16)

(C17)

(C18)*
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Solution- Theoretical Question 2
A Piezoelectric Crystal Resonator under an Alternating Voltage

Part A
(a) Refer to Figure Al. The left face of the rod moves a distance vAf while the
pressure wave travels a distance uAt with u = /Y / p . The strain at the left face is

=£=—VA1=—V

S — Ala)*!
l udt u (Ala)
From Hooke’s law, the pressure at the left face is
u
| ulAt |
| |
Figure Al —2—t» DRV At/2
p # At

VAL

(b) The velocity v is related to the displacement & as in a simple harmonic motion

(or a uniform circular motion, as shown in Figure A2) of angular frequency
® = ku . Therefore, if £(x,1) = &y sink(x —ut), then

v(x,t) =—kuéycosk(x—ut). (A2)*

The strain and pressure are related to velocity as in Problem (a). Hence,

S(x,t) =—v(x,t)/u=kéy cosk(x—ut) (A3)*

p(x,t) = puv(x,t) = —kpuzfo cosk(x—ut) (Ad)*
=-YS(x,t) =—kY&y cosk(x —ut)

Alternatively, the answers may be obtained by differentiations: Ax

v(x,t) = Z‘—f =—kuéycosk(x—ut),

S(x,0) = f‘f = k&y cosk(x—ut), Figure A2

p(x,t) = —Y% =—kY&Eycosk(x—ut).

' An equations marked with an asterisk contains answer to the problem.
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Part B
(c) Since the angular frequency @ and speed of propagation u are given, the
wavelength is given by A =27/ k with k= @/ u. The spatial variation of the

displacement ¢ is therefore described by
g(x) =B, sink(x—g)+B2 cosk(x—%) (B1)

Since the centers of the electrodes are assumed to be stationary, g(h/2) = 0. This

leads to B, = 0. Given that the maximum of g(x) is 1, we have 4 =+1 and
g(x) = +sin 2 (x = 2) (B2)*
u 2
Thus, the displacement is
E(x 1) = +2&, sin L (x —g) cos (B3)
u

(d) Since the pressure p (or stress 7') must vanish at the end faces of the quartz slab
(i.e., x =0 and x = b), the answer to this problem can be obtained, by analogy,
from the resonant frequencies of sound waves in an open pipe of length b.
However, given that the centers of the electrodes are stationary, all even
harmonics of the fundamental tone must be excluded because they have antinodes,
rather than nodes, of displacement at the bisection plane of the slab.

Since the fundamental tone has a wavelength A = 2b, the fundamental
frequency is given by f; =u/(2b) . The speed of propagation u is given by

10
u:\ﬁ: /%:5.45“03 m/s (B4)
P\ 2.65x10

and, given that b =1.00x10” m, the two lowest standing wave frequencies are

3
fi=55 =273 (kHa), f; =3/ =5, =818 (kHz) (BS5)*

[Alternative solution to Problems (c) and (d)]:
A longitudinal standing wave in the quartz slab has a displacement node at x
= b/2. It may be regarded as consisting of two waves traveling in opposite

directions. Thus, its displacement and velocity must have the following form

E(x,t) =28, sink(x —g) cosmt

(B6)
— £ [sink(x— g —ut) +sin k(x - g +un)]
v(x,t) =—ku&, [cosk(x — b_ ut) —cosk(x— b +ut)]
2 2 (B7)

=-2w¢,, sink(x — g) sinwt

where @ = ku and the first and second factors in the square brackets represent
waves traveling along the +x and —x directions, respectively. Note that Eq. (B6) is
identical to Eq. (B3) if we set &,, = +&.
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For a wave traveling along the —x direction, the velocity v must be replaced
by —v in Egs. (Ala) and (A1b) so that we have

§="" and p=puv (waves traveling along +x) (B8)
u

s=Y and p=—-puv  (waves traveling along —x) (B9)
u
As in Problem (b), the strain and pressure are therefore given by

S(x,0) = —kE, [~ cos k(x — 2 —ut) - cos k(x - 2+ ur]
, 2 2 (B10)
=2ké,, cosk(x — 5) coswt

p(x,1) = —puaé, [cosk(x -2 —ur) + cosk(x - 2 +un)]
2 2
f (B11)
=2puws, cosk(x—E) coswt

Note that v, S, and p may also be obtained by differentiating & as in Problem (b).
The stress T or pressure p must be zero at both ends (x = 0 and x = b) of the

slab at all times because they are free. From Eq. (B11), this is possible only

if cos(kb/2)=0or

kb—;b—zi}f =nr, n=13,5-- (B12)
In terms of wavelength A, Eq. (B12) may be written as
a=2L 135, (B13)
n

The frequency is given by

Y
f— AL p=1,3,5, . (B14)
T2b 2b p’

This is identical with the results given in Egs. (B4) and (BS5).

(e) From Egs. (5a) and (5b) in the Question, the piezoelectric effect leads to the
equations
T=Y(S-d,E) (B15)
2

d
o=Yd,S+e(1-Y—")E (B16)

gT
Because x = b/2 must be a node of displacement for any longitudinal standing

wave in the slab, the displacement & and strain S must have the form given in Egs.
(B6) and (B10), i.e., with ® = ku ,

E(x,t)=¢,, sink(x— g) cos(wt+ @) (B17)
S(x,1) = k&, cosk(x - g) cos(@? + @) (B18)

where a phase constant ¢ is now included in the time-dependent factors.
By assumption, the electric field £ between the electrodes is uniform and
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depends only on time:
V(t) Vm coswt

E(x
Substituting Eqgs. (B18) and (B19) into Eq. (B15), we have

(B19)

d
T =Y[k&, cosk(x— %) cos(wt + @) — 7”Vm coswt] (B20)

The stress 7 must be zero at both ends (x = 0 and x = b) of the slab at all times

because they are free. This is possible only if ¢ =0 and
kb v,
kg, cos—=d —* B21
S > =4 (B21)
Since ¢ =0, Egs. (B16), (B18), and (B19) imply that the surface charge density
must have the same dependence on time ¢ and may be expressed as
o(x,t)=o(x)cosmt (B22)

with the dependence on x given by
2

d
o(x)=Yd k&, cosk(x — 2) +&.(1- Y—”)Q
2 g h

=[Y kb cosk(x— ) +e,(1- Y—")]T’”
cos? ér

(f) At time ¢, the total surface charge Q(¢) on the lower electrode is obtained by

integrating o(x,¢) in Eq. (B22) over the surface of the electrode. The result is

on_ 1 i
V() V(t)-[ o(x,t)wdx = I o(x)wdx

cosk(x— )+gT(l Yd—)]dx

T

:_'[ [Y

(B24)
2 d’
(&, 2y ”—t —+1—Y—”
= (& P )i (kb )+ ( gT)]
=C [a*(=—tan—) + (1 - &*
ol (kb 2) ( )]
where
d2 2 -2
Congb—W, oczzY—”:M:QSZXIO’3 (B25)*
h &r 1.27x4.06

(The constant « is called the electromechanical coupling coefficient.)
Note: The result Co= erbw/h can readily be seen by considering the static
limit £ = 0 of Eq. (5) in the Question. Sincetan x * x when x << 1, we have

lim O(0)/V (1) = Cy [a? +(1-a?)]=C, (B26)

Evidently, the constant C| is the capacitance of the parallel-plate capacitor formed

by the electrodes (of area bw) with the quartz slab (of thickness 4 and permittivity
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£7) serving as the dielectric medium. It is therefore given by e r7bw/h.
(B47)*
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Solution- Theoretical Question 3
Part A

Neutrino Mass and Neutron Decay
(a) Let (czEe ,Cq,) (czEp ,¢q ), and (cZEV ,cq, ) be the energy-momentum

4-vectors of the electron, the proton, and the anti-neutrino, respectively, in the rest
frame of the neutron. Notice that £, E Es q..9 o g, are all in units of mass.

The proton and the anti-neutrino may be considered as forming a system of total
rest mass M, total energy c¢’E, , and total momentum c¢g, . Thus, we have
P 2 2 2
Ec:Ep+Ev’ qC:qp+qV’ Mc:Ec 4. (Al)

Note that the magnitude of the vector ¢, is denoted as g.. The same convention

also applies to all other vectors.
Since energy and momentum are conserved in the neutron decay, we have
E.+E,=m, (A2)
QC = _Qe (A3)
When squared, the last equation leads to the following equality
qc =q; =E; -m; (A4)
From Eq. (A4) and the third equality of Eq. (A1), we obtain
E; -M?=E;-m] (A5)

With its second and third terms moved to the other side of the equality, Eq. (AS5)
may be divided by Eq. (A2) to give

Ec_EezL(Mg_mez) (A6)
mn
As a system of coupled linear equations, Egs. (A2) and (A6) may be solved to give
1 2 2 2
Ec :2mn (mn —m, +Mc) (A7)
1 2 2 2
Eezzmn (mn +m, _Mc) (AS)

Using Eq. (A8), the last equality in Eq. (A4) may be rewritten as

1
de = 5oy +mZ = M) —@m,m, )’
1” (A9)
=5 Jmy, Am M Yy, +m =M Ym, —me +M )m, —m, =M )

n

Eq. (A8) shows that a maximum of E, corresponds to a minimum of M 62 .

Now the rest mass M is the total energy of the proton and anti-neutrino pair in

their center of mass (or momentum) frame so that it achieves the minimum
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M:mp+mv (A10)

when the proton and the anti-neutrino are both at rest in the center of mass frame.
Hence, from Egs. (A8) and (A10), the maximum energy of the electron £ = ¢’E, is

2
E =C"n m,$+m§—(mp+mv)2]z1.292569MeVz1.29MeV (A11)*!
n

max 2

When Eq. (A10) holds, the proton and the anti-neutrino move with the same
velocity v,, of the center of mass and we have
q 9 q
E_vv) |E=E,, = (E—p) |E=E,, = (E—c) |E=E

Vi _ (
max max max

c » .
where the last equality follows from Eq. (A3). By Egs. (A7) and (A9), the last
expression in Eq. (A12) may be used to obtain the speed of the anti-neutrino when
E = Enax. Thus, with M = m,+m,, we have

q
= (E_i) |M(,,:mp+mv (A12)

VAt me + M), +m, = M)(m, —m, +M)(m, —m, —M)

¢ m,zl —me2 +M? (A13)*
~ 0.00126538 = 0.00127

[Alternative Solution]

Assume that, in the rest frame of the neutron, the electron comes out with
momentum cq, and energy ¢’E,, the proton with cg p and ¢’E > and the

anti-neutrino with ¢, and c2E. . With the magnitude of vector G, denoted b
q, v g dq y

the symbol ¢,, we have

2 2 2 2 2 2 2 2 2
E,=m,+q,, E,=m,+q,, E;,=m,+q, (1A)

Conservation of energy and momentum in the neutron decay leads to

E,+E,=m,-E, (2A)
dp+4y==4. (3A)
When squared, the last two equations lead to
E,+E}+2E,E, =(m,-E,)’ (4A)
G+ v +24, Gy =97 = E —m] (5A)

Subtracting Eq. (5A) from Eq. (4A) and making use of Eq. (1A) then gives

' An equation marked with an asterisk contains answer to the problem.
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2 2 ~ = 2 2
mp+mv+2(EpEV—qp-qv)=mn+me—ZmnEe (6A)
or, equivalently,

; _m\% _2(EpEv _ép év) (7A)

2m,E, =m,2Z +me2 —-m
If 6 is the angle between ¢, and g, ,wehaveq, -q, =¢,q, cosf < q,q, so that

Eq. (7A) leads to the relation

2m,E, < mﬁ +m§ —mi —mv2 -2ELE, —4,9,) (8A)

Note that the equality in Eq. (8A) holds only if 8= 0, i.e., the energy of the electron
¢’E, takes on its maximum value only when the anti-neutrino and the proton move in
the same direction.

Let the speeds of the proton and the anti-neutrino in the rest frame of the neutron
be c¢f, and cf,,respectively. We then have ¢, = 5,E, and q, = f,E,.As

shown in Fig. A1, we introduce the angle ¢, (0 < @, < 7z /2) for the antineutrino by

2 2 .
q, =m,tang,, E,=+m; +q; =m,secg,, B, =q,/E,=sing, (9A)

Figure A1l

my

Similarly, for the proton, we write, with 0<¢, <7/2,

q,=m,tang,, E,=\m,+q, =m,secd,, B,=q,/E,=sing, (10A)
Eq. (8A) may then be expressed as

l-sing, sing
2mnEeSm,21+me2—m2 —m? —2m m,( P .

ITA
po Py cos¢pcos¢v) (114)

The factor in parentheses at the end of the last equation may be expressed as

l-sing,sing, 1-sing,sing, —cosg, cosg, 1—cos(¢, - ¢,)

cos g, cosg, a cos g, cosg, ~ cos 9, cos g,

+1>1 (12A4)

and clearly assumes its minimum possible value of 1 when ¢, = ¢,, i.e., when the
anti-neutrino and the proton move with the same velocity so that 8, = f3,. Thus, it

follows from Eq. (11A) that the maximum value of E, is
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1
(Ee)max :W(mrzz +m€2 _m]27 _mg _Zmpmv)
1” (13A)*
= m [mrzz +m€2 _(mp +mv)2]

n

and the maximum energy of the electron E = ¢’E, is

Epay =2 (E,) max ~1.292569 MeV ~ 1.29MeV (14A)*

When the anti-neutrino and the proton move with the same velocity, we have,
from Egs. (9A), (10A), (2A) ,(3A), and (1A), the result

2 2
qy _qP+qV _ 9. Ee —mg

qp
ﬁ :ﬁ == = = == (ISA)
v P Ep E, Ep+EV m, —E m,—E

e e

Substituting the result of Eq. (13A) into the last equation, the speed v,, of the
anti-neutrino when the electron attains its maximum value Epnay is, with M = my+m,,

given by

2 2 2 2 22 2.2
\/(Ee)maX —m, _ \/(mn +m; —M*")" —4m;m;
My = (E¢) max 2m,2, —(m,f +me2 —-M?)

Ny, +my + M)(my, +my = M)(m, —m, +M)(m, —m, - M)

1%
Tm = (ﬂv)maer =

*
m,%—m62+M2 (164)
~ 0.00126538 = 0.00127
Part B
Light Levitation
(b) Refer to Fig. B1. Refraction of light at the spherical surface obeys Snell’s law and
leads to
nsin@; =sind, (B1)
Neglecting terms of the order (8/R)’or higher in sine functions, Eq. (B1) becomes
nd; =0, (B2)
For the triangle AFAC in Fig. B1, we have zt
f=0,-6;=~nb; -0; =(n-1)0; (B3) F
Let f, be the frequency of the incident light. If \
n, is the number of photons incident on the plane \
surface per unit area per unit time, then the total \‘\ 0
number of photons incident on the plane surface per B
unit time is 7,78 2 The total power P of photons A |
incident on the plane surface is (n,76 2 )hfy), \‘\Vi
with /4 being Planck’s constant. Hence, \\;‘ n
0;\
| |C
A
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P
752 hf,

n (B4)

p:

The number of photons incident on an annular disk of inner radius » and outer
radius r +dr on the plane surface per unit time is 7, (27zrdr) , where

r = Rtan6; = RO, . Therefore,
n,Qmdr) ~ n,(27R*)0,d0, (B5)

The z-component of the momentum carried away per unit time by these photons

when refracted at the spherical surface is

2
dF. =n, hf ° 2mdr)cos B~n, @(MRZ)Q —ﬂ?) 0.0,

(B6)
~n, fO Mo (22179, - 1= 1) 631d0,
so that the z-component of the total momentum carried away per unit time is
hfy o, n— 1 2
F, =27R’n, (ﬁ) Jo™16; - (1) 63140,
(B7)
ROy 1) o2
where tand,;, = % = 0, . Therefore, by the result of Eq. (B5), we have
R2P hfy. 52 n-1)%8%. p n-1)>252
F= TR Moy 0Ty (oD0T) Py (EDOT) (g
wo“hfy ¢ R 4R ¢ 4R

The force of optical levitation is equal to the sum of the z-components of the forces

exerted by the incident and refracted lights on the glass hemisphere and is given by

P P n—-0%8%. m-1)2s5%p
_+(F)__ c[l_( 4132 1= 4132 c

Equating this to the weight mg of the glass hemisphere, we obtain the minimum

(B9)

laser power required to levitate the hemisphere as

4mgcR 2

p=—""""
(n-132652

(B10)*



