SOLUTION EXPERIMENT I

PART A

1. [Total 0.5 pts]

The experimental method chosen for the calibration of the arbitrary scale is a simple pendulum method [0.3 pts]

Figure 1. Sketch of the experimental set up [0.2 pts]

2. [Total 1.5 pts]

The expression relating the measurable quantities: [0.5 pts]

$$T_{osc} = 2 \boldsymbol{p} \sqrt{\frac{l}{g}}; T_{osc}^2 = 4 \boldsymbol{p}^2 \frac{l}{g}$$

Approximations :

 $\sin \boldsymbol{q} \approx \boldsymbol{q}$ [0.5 pts]

mathematical pendulum (mass of the wire << mass of the steel ball, the radius of the steel ball << length of the wire [0.5 pts] flexibility of the wire, air friction, etc [0.1 pts, only when one of the two major points above is not given]

3. **[Total 1.0 pts]** Data sample from simple pendulum experiment # of cycle ≥ 20 [0.2 pts.], difference in T ≥ 0.01 s [0.4 pts], # of data ≥ 4 [0.4 pts]

No.	t(s) for 50 cycles	Period, T (s)	Scale marked on the
			wire (arbitrary scale)
1	91.47	1.83	200
2	89.09	1.78	150
3	86.45	1.73	100
4	83.8	1.68	50

4. [Total 0.5 pts]

No.	Period, T (s)	Scale marked on the wire (arbitrary scale)	$T^2(s^2)$
1	1.83	200	3.35
2	1.78	150	3.17
3	1.73	100	2.99
4	1.68	50	2.81

The plot of T^2 vs scale marked on the wire:

- 5. Determination of the smallest unit of the arbitrary scale in term of mm [Total 1.5
 - pts]

$$T_{osc_{1}}^{2} = \frac{4\mathbf{p}^{2}}{g} L_{1} , \qquad T_{osc_{2}}^{2} = \frac{4\mathbf{p}^{2}}{g} L_{2}$$
$$\left(T_{osc_{1}}^{2} - T_{osc_{2}}^{2}\right) = \frac{4\mathbf{p}^{2}}{g} L_{1} - L_{2} = \frac{4\mathbf{p}^{2}}{g} \Delta L$$

$\Delta L = \frac{g}{4\boldsymbol{p}^2} \left(T_{osc_1}^2 - T_{osc_2}^2 \right)$	or other equivalent expression	[0.5 pts]
---	--------------------------------	-----------

No.		Calculated ΔL (m)	∆L in arbitrary scale	Values of smallest unit of arbitrary scale (mm)
1.	$T_1^2 - T_2^2 = 0.171893 s^2$	0.042626	50	0.85
2.	$T_1^2 - T_3^2 = 0.357263 \text{ s}^2$	0.088595	100	0.89
3.	$T_1^2 - T_4^2 = 0.537728 s^2$	0.133347	150	0.89
4.	$T_2^2 - T_3^2 = 0.18537 \text{ s}^2$	0.045968	50	0.92
5.	$T_2^2 - T_4^2 = 0.365835 \text{ s}^2$	0.09072	100	0.91
6.	$T_3^2 - T_4^2 = 0.180465 \text{ s}^2$	0.044752	50	0.90

The average value of smallest unit of arbitrary scale, $\bar{l} = 0.89 \text{ mm}$ [0.5 pts]

The estimated error induced by the measurement: [0.5 pts]

No.	Values of smallest unit of arbitrary scale (mm)	$(l-\overline{l})$	$(l-\bar{l})^2$
1.	0.85	-0.04	0.0016
2.	0.89	0	0
3.	0.89	0	0
4.	0.92	0.03	0.0009
5.	0.91	0.02	0.0004
6.	0.90	0.01	0.0001

And the standard deviation is:

$$\Delta l = \sqrt{\frac{\sum_{i=1}^{6} (l - \bar{l})^2}{N - 1}} = \sqrt{\frac{0.003}{5}} = 0.02 \text{ mm}$$

other legitimate methods may be used

PART B

1. The experimental set up:[Total 1.0 pts]

2. Derivation of equation relating the quantities time *t*, current *I*, and water level difference *Dn*: :[Total 1.5 pts]

$$I = \frac{\Delta Q}{\Delta t}$$

From the reaction: $2 H^+ + 2 e^- H_2$, the number of molecules produced in the process (ΔN) requires the transfer of electric change is $\Delta Q=2e \Delta N$: [0.2 pts]

$$I = \frac{\Delta N \, 2e}{\Delta t}$$
 [0.5 pts]

$$P \Delta V = \Delta N k_{\rm B} T \qquad [0.5 \text{ pts}]$$

$$= \frac{I \Delta t}{2e} k_{\rm B} T$$

$$\mathbf{r}^{2} = \frac{I \Delta t}{2e} \frac{k_{\rm B}}{E} T$$
[0.2 pts]

$$P \Delta h(\boldsymbol{p}r^2) = \frac{T \Delta u}{2} \frac{\kappa_B}{e} T$$
[0.2 pts]

$$I \Delta t = \frac{e}{k_{\rm B}} \frac{2P(\mathbf{p}r^2)}{T} \Delta h$$
 [0.1 pts]

3. ′	The exp	perimental	data: [Total	1.0	pts]	
------	---------	------------	---------	-------	-----	------	--

No.	∆h (arbitrary scale)	I (mA)	∆t (s)
1	12	4.00	1560.41
2	16	4.00	2280.61
3	20	4.00	2940.00
4	24	4.00	3600.13

- The circumference ϕ , of the test tube = 46 arbitrary scale [0.3 pts]
- The chosen values for $\Delta h \geq 4$ scale unit) for acceptable error due to uncertainty of the water level reading and for $I \leq 4$ mA) for acceptable disturbance [0.3 pts]
- # of data ≥ 4 [0.4 pts]

The surrounding condition (T,P) in which the experimental data given above taken: T = 300 K $P = 1.00 \text{ 10}^5 \text{ Pa}$

4. Determination the value of e/k_B [Total 1.5 pts]

No.	∆h (arbitrary	∆h (mm)	I (mA)	∆t (s)	I ∆t(C)
	scale)				
1	12	10.68	4.00	1560.41	6241.64
2	16	14.24	4.00	2280.61	9120.48
3	20	17.80	4.00	2940.00	11760.00
4	24	21.36	4.00	3600.13	14400.52

Plot of $I\Delta t vs \Delta h$ from the data listed above

The slope obtained from the plot is 763.94;

$$\frac{e}{k_{B}} = \frac{763.94 \times 300 \times \boldsymbol{p}}{2 \times 10^{5} \times (23 \times 0.89 \times 10^{-3} \times 0.82)^{2}} = 1.28 \times 10^{4} \text{ Coulomb K/J}$$
[1.0 pts]

Alternatively [the same credit points]

No.	∆h (mm)	I ∆t(C)	Slope	e/k _b
1	10.68	6241.64	584.4232	9774.74
2	14.24	9120.48	640.4831	10712.37
3	17.80	11760.00	660.6742	11050.07
4	21.36	14400.52	674.1816	11275.99

Average of $e/k_b = 1.07 \times 10^4$ Coulomb K/J [1.0 pts]

No.	e/k _b	difference	Square
	-		difference
1	9774.74	-928.55	862205.5
2	10712.37	9.077117	82.39405
3	11050.07	346.7808	120256.9
4	11275.99	572.6996	327984.9

Estimated error

[0.5 pts]

The standard deviation obtained is 0.66×10^3 Coulomb K/J, Other legitimate measures of estimated error may be also used

SOLUTION OF EXPERIMENT PROBLEM 2

1. The optical components are [total 1.5 pts]:

no.1	Diffraction grating	[0.5 pts]

- no.2 Diffraction grating [0.5 pts]
- no.3 Plan-parallel plate [0.5 pts]
- 2. Cross section of the box [total 1.5 pts]:

3. Additional information [total 1.0 pts]:

4. Diffraction grating [total 2.0 pts]:

Path length difference:

 $\Delta = d \sin \theta$, d = spacing of the grating

Diffraction order:

 $\Delta = m \lambda$, m =order number

Hence, for the first order (m = 1):

 $\sin \theta = \lambda / d$ [0.4 pts]

Observation data:

	sin θ	θ	$\tan \theta$
	0.3219	18.78°	0.34
number of data ³ 3	0.3048	17.74°	0.32
[0.5 pts]	0.3048	17.74°	0.32

Name of component no.1	Specification	
Diffraction grating	Spacing = 2.16 μ m	[0.4 pts]
	Lines at right angle to the slit	[0.1 pts]

Note: true value of grating spacing is 2.0 μ m, deviation of the result $\leq 10\%$

5. Diffraction grating [total 2.0 pts]:

For the derivation of the formula, see nr.4 above.

[1.0 pts]

Observation data:			
tanθ	θ	sinθ	
1.04	46.12°	0.7208	
0.96	43.83 ⁰	0.6925	number of data 33
1.08	47.20°	0.7330	[0.5 pts]

Name of component no.2	Specification	
Diffraction grating	Spacing = $0.936 \ \mu m$	[0.4 pts]
	Lines parallel to the slit	[0.1 pts]

Note: true value of grating spacing is 1.0 μm , deviation of the result $\leq 10\%$

Name of component no.3	Specification	
Plane-parallel plate	Thickness = 17.9 mm	[0.2 pts]
	Angle to the axis of the box 49°	[0.3 pts]

Note: - true value of plate thickness is 20 mm

- true value of angle to the axis of the box is 52°

- deviation of the results $\leq 20\%$.