SOLUTION EXPERIMENT I

PART A

1. [Total 0.5 pts$]$

The experimental method chosen for the calibration of the arbitrary scale is a simple pendulum method [0.3 pts]

Figure 1. Sketch of the experimental set up [0.2 pts]

2. [Total 1.5 pts]

The expression relating the measurable quantities: [0.5 pts]

$$
T_{o s c}=2 \pi \sqrt{\frac{l}{g}} ; T_{o s c}{ }^{2}=4 \pi^{2} \frac{l}{g}
$$

Approximations :

$$
\sin \theta \approx \theta \quad[0.5 \mathrm{pts}]
$$

mathematical pendulum (mass of the wire << mass of the steel ball, the radius of the steel ball << length of the wire [0.5 pts]
flexibility of the wire, air friction, etc [0.1 pts , only when one of the two major points above is not given]
3. [Total 1.0 pts] Data sample from simple pendulum experiment \# of cycle ≥ 20 [0.2 pts.] , difference in $T \geq 0.01 \mathrm{~s}$ [0.4 pts$]$, \# of data ≥ 4 [0.4 pts$]$

No.	t(s) for 50 cycles	Period, T (s)	Scale marked on the wire (arbitrary scale)
1	91.47	1.83	200
2	89.09	1.78	150
3	86.45	1.73	100
4	83.8	1.68	50

4. [Total 0.5 pts]

No.	Period, T (s)	Scale marked on the wire (arbitrary scale)	$\mathrm{T}^{2}\left(\mathrm{~s}^{2}\right)$
1	1.83	200	3.35
2	1.78	150	3.17
3	1.73	100	2.99
4	1.68	50	2.81

The plot of T^{2} vs scale marked on the wire:

Scale marked on the wire (arbitrary scale)
5. Determination of the smallest unit of the arbitrary scale in term of mm [Total $\mathbf{1 . 5}$ pts]

$$
\begin{aligned}
& T_{o s c_{1}}^{2}=\frac{4 \pi^{2}}{g} L_{1}, \quad T_{o s c_{2}}^{2}=\frac{4 \pi^{2}}{g} L_{2} \\
& \left(T_{o s c_{1}}^{2}-T_{o s c_{2}}^{2}\right)=\frac{4 \pi^{2}}{g} L_{1}-L_{2}=\frac{4 \pi^{2}}{g} \Delta L
\end{aligned}
$$

$$
\begin{equation*}
\Delta L=\frac{g}{4 \pi^{2}}\left(T_{o s c_{1}}^{2}-T_{o s c_{2}}^{2}\right) \text { or other equivalent expression } \tag{0.5pts}
\end{equation*}
$$

No.		Calculated $\Delta \mathrm{L}(\mathrm{m})$	$\Delta \mathrm{L}$ in arbitrary scale	Values of smallest unit of arbitrary scale (mm)
1.	$\mathrm{~T}_{1}{ }^{2}-\mathrm{T}_{2}{ }^{2}=0.171893 \mathrm{~s}^{2}$	0.042626	50	0.85
2.	$\mathrm{~T}_{1}{ }^{2}-\mathrm{T}_{3}{ }^{2}=0.357263 \mathrm{~s}^{2}$	0.088595	100	0.89
3.	$\mathrm{~T}_{1}{ }^{2}-\mathrm{T}_{4}{ }^{2}=0.537728 \mathrm{~s}^{2}$	0.133347	150	0.89
4.	$\mathrm{~T}_{2}{ }^{2}-\mathrm{T}_{3}{ }^{2}=0.18537 \mathrm{~s}^{2}$	0.045968	50	0.92
5.	$\mathrm{~T}_{2}{ }^{2} \mathrm{~T}_{4}{ }^{2}=0.365835 \mathrm{~s}^{2}$	0.09072	100	0.91
6.	$\mathrm{~T}_{3}{ }^{2}-\mathrm{T}_{4}{ }^{2}=0.180465 \mathrm{~s}^{2}$	0.044752	50	0.90

The average value of smallest unit of arbitrary scale, $\bar{l}=0.89 \mathrm{~mm}$

The estimated error induced by the measurement: [0.5 pts]

No.	Values of smallest unit of arbitrary scale (mm)	$(l-\bar{l})$	$(l-\bar{l})^{2}$
1.	0.85	-0.04	0.0016
2.	0.89	0	0
3.	0.89	0	0
4.	0.92	0.03	0.0009
5.	0.91	0.02	0.0004
6.	0.90	0.01	0.0001

And the standard deviation is:

$$
\Delta l=\sqrt{\frac{\sum_{i=1}^{6}(l-\bar{l})^{2}}{N-1}}=\sqrt{\frac{0.003}{5}}=0.02 \mathrm{~mm}
$$

other legitimate methods may be used

PART B

1. The experimental set up:[Total $\mathbf{1 . 0} \mathbf{~ p t s}]$
[0.2 pts] [0.2 pts]

2. Derivation of equation relating the quantities time t, current I, and water level difference Δh : :[Total 1.5 pts]
$I=\frac{\Delta Q}{\Delta t}$
From the reaction: $2 \mathrm{H}^{+}+2 \mathrm{e} \longrightarrow \mathrm{H}_{2}$, the number of molecules produced in the process (ΔN) requires the transfer of electric change is $\Delta \mathrm{Q}=2 \mathrm{e} \Delta \mathrm{N}: \quad[0.2 \mathrm{pts}]$

$$
\begin{align*}
I & =\frac{\Delta \mathrm{N} 2 \mathrm{e}}{\Delta \mathrm{t}} \tag{0.5pts}\\
P \Delta \mathrm{~V} & =\Delta \mathrm{N}_{\mathrm{B}} \mathrm{~T} \tag{0.5pts}\\
& =\frac{I \Delta t}{2 \mathrm{e}} \mathrm{k}_{\mathrm{B}} \mathrm{~T} \\
\mathrm{P} \Delta \mathrm{~h}\left(\pi r^{2}\right) & =\frac{I \Delta t}{2} \frac{\mathrm{k}_{\mathrm{B}}}{e} \mathrm{~T} \tag{0.2pts}\\
I \Delta t & =\frac{\mathrm{e}}{\mathrm{k}_{\mathrm{B}}} \frac{2 P\left(\pi r^{2}\right)}{T} \Delta \mathrm{~h} \tag{0.1pts}
\end{align*}
$$

3. The experimental data: [Total 1.0 pts]

No.	Δh (arbitrary scale)	I (mA)	$\Delta t(\mathrm{~s})$
1	12	4.00	1560.41
2	16	4.00	2280.61
3	20	4.00	2940.00
4	24	4.00	3600.13

- The circumference ϕ, of the test tube $=46$ arbitrary scale
[0.3 pts]
- The chosen values for $\Delta h(\geq 4$ scale unit) for acceptable error due to uncertainty of the water level reading and for $I(\leq 4 \mathrm{~mA})$ for acceptable disturbance [0.3 pts]
- \# of data ≥ 4

The surrounding condition (T, P) in which the experimental data given above taken:
$T=300 \mathrm{~K}$
$P=1.0010^{5} \mathrm{~Pa}$
4. Determination the value of $\mathrm{e} / \mathrm{k}_{\mathrm{B}}$ [Total $1.5 \mathbf{p t s}$]

No.	$\Delta \mathrm{h}$ (arbitrary scale)	$\Delta \mathrm{h}(\mathrm{mm})$	$\mathrm{I}(\mathrm{mA})$	$\Delta \mathrm{t}(\mathrm{s})$	$\mathrm{I} \Delta \mathrm{t}(\mathrm{C})$
1	12	10.68	4.00	1560.41	6241.64
2	16	14.24	4.00	2280.61	9120.48
3	20	17.80	4.00	2940.00	11760.00
4	24	21.36	4.00	3600.13	14400.52

Plot of $\mathrm{I} \Delta \mathrm{t}$ vs $\Delta \mathrm{h}$ from the data listed above

The slope obtained from the plot is 763.94;

$$
\frac{\mathrm{e}}{\mathrm{k}_{\mathrm{B}}}=\frac{763.94 \times 300 \times \pi}{2 \times 10^{5} \times\left(23 \times 0.89 \times 10^{-3} \times 0.82\right)^{2}}=1.28 \times 10^{4} \text { Coulomb K} / \mathrm{J}
$$

Alternatively [the same credit points]

No.	$\Delta \mathrm{h}(\mathrm{mm})$	$\mathrm{l} \Delta \mathrm{t}(\mathrm{C})$	Slope	$\mathrm{e} / \mathrm{k}_{\mathrm{b}}$
1	10.68	6241.64	584.4232	9774.74
2	14.24	9120.48	640.4831	10712.37
3	17.80	11760.00	660.6742	11050.07
4	21.36	14400.52	674.1816	11275.99

Average of e/k $\mathrm{k}_{\mathrm{b}}=1.07 \times 10^{4}$ Coulomb K/J
$[1.0 \mathrm{pts}]$

No.	$\mathrm{e} / \mathrm{k}_{\mathrm{b}}$	difference	Square difference
1	9774.74	-928.55	862205.5
2	10712.37	9.077117	82.39405
3	11050.07	346.7808	120256.9
4	11275.99	572.6996	327984.9

Estimated error
[0.5 pts]
The standard deviation obtained is $0.66 \times 10^{3} \quad$ Coulomb K/J,
Other legitimate measures of estimated error may be also used

SOLUTION OF EXPERIMENT PROBLEM 2

1. The optical components are [total $1.5 \mathbf{p t s}]$:

no. 1	Diffraction grating	$[0.5 \mathrm{pts}]$
no. 2	Diffraction grating	$[0.5 \mathrm{pts}]$
no. 3	Plan-parallel plate	$[0.5 \mathrm{pts}]$

2. Cross section of the box [total $1.5 \mathbf{p t s}]$:

3. Additional information [total 1.0 pts$]$:

Distance of the grating (no.1) to the left wall is practically zero [0.2 pts]

Lines of grating no. 1 is at right angle to the slit
[0.3 pts]

Distance of the grating (no.2) to the right wall is practically zero [0.2 pts]

Lines of grating no. 2
is parallel to the slit
[0.3 pts]
4. Diffraction grating [total 2.0 pts :

Path length difference:

$$
\Delta=d \sin \theta, \quad d=\text { spacing of the grating }
$$

Diffraction order:

$$
\Delta=m \lambda, \quad m=\text { order number }
$$

Hence, for the first order $(m=1)$:

$$
\sin \theta=\lambda / d \quad[0.4 \mathrm{pts}]
$$

Observation data:
$\tan \theta \quad \theta \quad \sin \theta$
0.34
$18.78^{0} \quad 0.3219$
0.32
$17.74^{0} \quad 0.3048$ number of data ≥ 3
0.32
17.74^{0}
0.3048
[0.5 pts]

Name of component no.1	Specification
Diffraction grating	Spacing $=2.16 \mu \mathrm{~m}$ Lines at right angle to the slit

[0.4 pts]
[0.1 pts]

Note: true value of grating spacing is $2.0 \mu \mathrm{~m}$, deviation of the result $\leq 10 \%$
5. Diffraction grating [total 2.0 pts :

For the derivation of the formula, see nr. 4 above.

> [1.0 pts]

Observation data:

$\tan \theta$	θ	$\sin \theta$	
1.04	46.12^{0}	0.7208	
0.96	43.83^{0}	0.6925	number of data ≥ 3
1.08	47.20°	0.7330	$[0.5$ pts $]$

Name of component no.2	Specification
Diffraction grating	Spacing $=0.936 \mu \mathrm{~m}$ Lines parallel to the slit

[0.4 pts]
[0.1 pts]

Note: true value of grating spacing is $1.0 \mu \mathrm{~m}$, deviation of the result $\leq 10 \%$

Snell's law:

$$
\sin \varphi=n \sin \varphi^{\prime}, \quad \varphi^{\prime}=\angle \mathrm{BAC}
$$

Path length inside the plate:

$$
\mathrm{AC}=\mathrm{AB} / \cos \varphi^{\prime}, \quad \mathrm{AB}=h=\text { plate thickness }
$$

Beam displacement:

$$
\mathrm{CD}=t=\mathrm{AC} \sin \angle \mathrm{CAD}, \quad \angle \mathrm{CAD}=\varphi-\varphi^{\prime}
$$

Hence:

$$
t=h \sin \varphi\left[1-\cos \varphi /\left(n^{2}-\sin ^{2} \varphi\right)^{1 / 2}\right] \quad[0.6 p t s]
$$

Observation data:

φ	t	
0	0	(angle between beam and axis $\left.49^{\circ}\right)$
49^{0}	7.3 arbitrary scale	

Name of component no.3	Specification
Plane-parallel plate	Thickness $=17.9 \mathrm{~mm}$ Angle to the axis of the box 49°

Note: - true value of plate thickness is 20 mm

- true value of angle to the axis of the box is 52°
- deviation of the results $\leq 20 \%$.

