Solution 1

(a) $m\ddot{X}_n = S(X_{n+1} - X_n) - S(X_n - X_{n-1}).$	0.7
(b) Let $X_n = A \sin nka \cos (\omega t + \alpha)$, which has a harmonic time dependence.	
By analogy with the spring, the acceleration is $\ddot{X}_n = -\omega^2 X_n$.	
Substitute into (a): $-mA\omega^2 \sin nka = AS \{\sin (n+1)ka - 2\sin nka + \sin (n-1)ka\}$	
$= -4SA \sin nka \sin^2 ka.$	0.6
Hence $\omega^2 = (4S/m) \sin^2 _ka$.	0.2
To determine the allowed values of k , use the boundary condition $\sin (N+1) ka = \sin kL = 0$.	0.7
The allowed wave numbers are given by $kL = \pi, 2\pi, 3\pi,, N\pi$ (N in all),	0.3
and their corresponding frequencies can be computed from $\omega = \omega_0 \sin _ka$,	
in which $\omega_{\text{max}} = \omega_0 = 2(S/m)$ is the maximum allowed frequency.	0.4
(c) $\langle E(\omega) \rangle = \frac{\sum_{p=0}^{\infty} p\hbar \omega P_p(\omega)}{\sum_{p=0}^{\infty} P_p(\omega)}$	
First method: $\frac{\displaystyle\sum_{n=0}^{\infty} n\hbar \omega e^{-n\hbar \omega/k_BT}}{\displaystyle\sum_{n=0}^{\infty} e^{-n\hbar \omega/k_BT}} = k_B T^2 \frac{\partial}{\partial T} \ln \sum_{n=0}^{\infty} e^{-n\hbar \omega/k_BT}$	1.5
The sum is a geometric series and is $\{1 - e^{-\hbar\omega/k_BT}\}^{-1}$	0.5
We find $\langle E(\omega) \rangle = \frac{\hbar \omega}{e^{\hbar \omega / k_B T} - 1}$.	
Alternatively: denominator is a geometric series = $\{1 - e^{-\hbar\omega/k_BT}\}^{-1}$	(0.5)
Numerator is $k_B T^2$ (d/dT) (denominator) = $e^{-\hbar\omega/k_B T} \{1 - e^{-\hbar\omega/k_B T}\}^{-2}$ and result follows.	(1.5)

A non-calculus method: Let $D = 1 + e^{-x} + e^{-2x} + e^{-3x} +$, where $x = \hbar \omega / k_B T$. This is a geometric series and equals $D = 1/(1 - e^{-x})$. Let $N = e^{-x} + 2 e^{-2x} + 3e^{-3x} +$ The result we want is N/D . Observe $D - 1 = e^{-x} + e^{-2x} + e^{-3x} + e^{-4x} + e^{-5x} +$ $(D - 1)e^{-x} = e^{-2x} + e^{-3x} + e^{-4x} + e^{-5x} +$ $(D - 1)e^{-2x} = e^{-3x} + e^{-4x} + e^{-5x} +$ Hence $N = (D - 1)D$ or $N/D = D - 1 = \frac{e^{-x}}{1 - e^{-x}} = \frac{1}{e^x - 1}$.	(2.0)
(d) From part (b), the allowed k values are π/L , $2\pi/L$,, $N\pi/L$.	
	1.0
Hence the spacing between allowed k values is π/L , so there are $(L/\pi)\Delta k$ allowed modes in the	1.0
wave-number interval Δk (assuming $\Delta k >> \pi/L$).	
(e) Since the allowed k are π/L ,, $N\pi/L$, there are N modes.	0.5
Follow the problem: $d\omega/dk = \underline{a\omega_0 \cos \underline{ka} \text{ from part (a) \& (b)}}$ $= \frac{1}{2} a \sqrt{\omega_{\text{max}}^2 - \omega^2}, \omega_{\text{max}} = \omega_0. \text{ This second form is more convenient for integration.}$	0.5
The number of modes dn in the interval $d\omega$ is	
$dn = (L/\pi)\Delta k = (L/\pi) (dk/d\omega) d\omega$	0.5 for eitl
$= (L/\pi) \{ a\omega_0 \cos ka \}^{-1} d\omega$	
$= \frac{L}{\pi} \frac{2}{a} \frac{1}{\sqrt{\omega_{\text{max}}^2 - \omega^2}} d\omega$	This part is necessary for E_T below,
$= \frac{2(N+1)}{\pi} \frac{1}{\sqrt{\omega_{\text{max}}^2 - \omega^2}} d\omega$	but not for number of modes
Total number of modes = $\int dn = \int_{0}^{\omega_{\text{max}}} \frac{2(N+1)}{\pi} \frac{d\omega}{\sqrt{\omega_{\text{max}}^2 - \omega^2}} = N + 1 \approx N \text{ for large } N.$	(0.5)
Total crystal energy from (c) and dn of part (e) is given by $E_T = \frac{2N}{\pi} \int_0^{\omega_{\text{max}}} \frac{\hbar \omega}{e^{\hbar \omega/k_B T} - 1} \frac{d\omega}{\sqrt{\omega_{\text{max}}^2 - \omega^2}}.$	0.7

(f) Observe first from the last formula that E_T increases monotonically with temperature since

$${e^{\hbar\omega/kT} - 1}^{-1}$$
 is increasing with T .

0.2

When $T \to 0$, the term – 1 in the last result may be neglected in the denominator so

0.2

$$E_{T} \approx {}_{T \to 0} \frac{2N}{\pi} \int \hbar \omega \ e^{-\hbar \omega / k_{B}T} \frac{1}{\sqrt{\omega_{\text{max}}^{2} - \omega^{2}}} d\omega$$

0.3

$$= \frac{2N}{\hbar\pi\omega_{\text{max}}} (k_B T)^2 \int_0^\infty \frac{xe^{-x}}{\sqrt{1 - (k_B Tx / \hbar\omega_{\text{max}})^2}} dx$$

0.2

which is quadratic in T (denominator in integral is effectively unity) hence C_V is linear in T near absolute zero.

0.2

Alternatively, if the summation is retained, we have

$$E_{T} = \frac{2N}{\pi} \sum_{\omega} \frac{\hbar \omega}{e^{\hbar \omega / k_{B}T} - 1} \frac{\Delta \omega}{\sqrt{\omega_{\text{max}}^{2} - \omega^{2}}} \rightarrow_{T \to 0} \frac{2N}{\pi} \sum_{\omega} \hbar \omega e^{-\hbar \omega / k_{B}T} \frac{\Delta \omega}{\sqrt{\omega_{\text{max}}^{2} - \omega^{2}}}$$

$$= \frac{2N}{\pi} \frac{(k_{B}T)^{2}}{\hbar \omega} \sum_{y} e^{-y} y \Delta y$$

$$(0.5)$$

When $T \rightarrow \infty$, use $e^x \approx 1 + x$ in the denominator,

0.2

$$E_T \approx \sum_{T \to \infty} \frac{2N}{\pi} \int_0^{\omega_{\text{max}}} \frac{\hbar \omega}{\hbar \omega / k_B T} \frac{1}{\sqrt{\omega_{\text{max}}^2 - \omega^2}} d\omega = \frac{2N}{\pi} k_B T \frac{\pi}{2},$$

0.1

which is linear; hence $C_V \to Nk_B = R$, the universal gas constant. This is the Dulong-Petit rule.

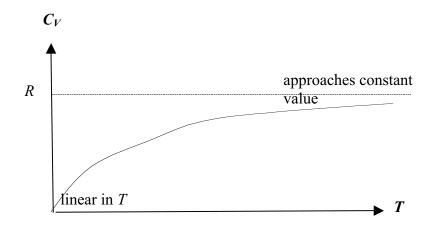
Alternatively, if the summation is retained, write denominator as $e^{\hbar\omega/k_BT} - 1 \approx \hbar\omega/k_BT$ and

(0.2)

$$E_T \to_{T \to \infty} \frac{2N}{\pi} k_B T \sum_{\omega} \frac{\Delta \omega}{\sqrt{\omega_{\max}^2 - \omega^2}}$$
 which is linear in T , so C_V is constant.

0.5

Sketch of C_V versus T:



Answer sheet: Question 1

(a) Equation of motion of the n^{th} mass is:

$$m\ddot{X}_{n} = S(X_{n+1} - X_{n}) - S(X_{n} - X_{n-1}).$$

(b) Angular frequencies $\boldsymbol{\omega}$ of the chain's vibration modes are given by the equation:

$$\omega^2 = (4S/m)\sin^2 _ka.$$

Maximum value of ω is: $\omega_{\text{max}} = \omega_0 = 2(S/m)$

The allowed values of the wave number k are given by:

$$\pi/L$$
, $2\pi/L$, ..., $N\pi/L$.

How many such values of k are there? N

(f) The average energy per frequency mode ω of the crystal is given by:

$$\langle E(\omega) \rangle = \frac{\hbar \omega}{e^{\hbar \omega/k_B T} - 1}$$

(g) There are how many allowed modes in a wave number interval Δk ?

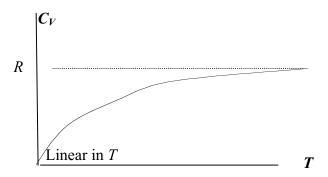
$$(L/\pi)\Delta k$$
.

(e) The total number of modes in the lattice is: N

Total energy $E_{\rm T}$ of crystal is given by the formula:

$$E_T = \frac{2N}{\pi} \int_0^{\omega_{\text{max}}} \frac{\hbar \omega}{e^{\hbar \omega / k_B T} - 1} \frac{d\omega}{\sqrt{\omega_{\text{max}}^2 - \omega^2}}.$$

(h) A sketch (graph) of C_V versus absolute temperature T is shown below.



For $T \ll 1$, C_V displays the following behaviour: C_V is linear in T.

As $T \to \infty$, C_V displays the following behaviour: $C_V \to Nk_B = R$, the universal gas constant.

Solution to Question 2: The Rail Gun

Proper Solution (taking induced emf into consideration): (a)		
Let I be the current supplied by the battery in the absence of back emf.		
Let i be the induced current by back emf ε_b .		
Since $\varepsilon_b = d\phi / dt = d(BLx)/dt = BLv$, $\therefore i = Blv/R$.	1	
	1	
Net current, $I_N = I - i = I - BLv/R$.	0.5	
Forces parallel to rail are:		
Force on rod due to current is $F_c = BLI_N = BL(I - BLv/R) = BLI - B^2L^2v/R$.	0.5	
Net force on rod and young man combined is $F_N = F_c - mg \sin \theta$. (1)		
Newton's law: $F_N = ma = mdv/dt$. (2)	0.5	
Equating (1) and (2), & substituting for F_c & dividing by m , we obtain the acceleration		
$dv/dt = \alpha \cdot v/\tau \qquad \text{where } \alpha = PH/m \text{a sin } \Omega \text{ and } \tau = mP/P^2I^2$	0.5	
$dv/dt = \alpha - v/\tau$, where $\alpha = BIL/m - g\sin\theta$ and $\tau = mR/B^2L^2$.		3

		-		
(h	1	(i	١
Ųυ	"	ı	•	,

Since initial velocity of rod = 0, and let velocity of rod at time t be v(t), we have

$$v(t) = v_{\infty} \left(1 - e^{-t/\tau} \right), \tag{3}$$

0.5

where
$$v_{\infty}(\theta) = \alpha \tau = \frac{IR}{BL} \left(1 - \frac{mg}{BLI} \sin \theta \right)$$
.

Let t_s be the total time he spent moving along the rail, and v_s be his velocity when he leaves the rail, i.e.

0.5

$$v_s = v(t_s) = v_{\infty} \left(1 - e^{-t_s/\tau} \right).$$

(4)

(5)

0.5

$$\therefore t_s = -\tau \ln(1 - v_s / v_{\infty})$$

1.5

(b) (ii)		
Let t_f be the time in flight:		
$t_f = \frac{2v_s \sin \dot{e}}{g} \tag{6}$	0.5	
He must travel a horizontal distance w during t_f .		
$w = (v_s \cos \dot{e})t_f \tag{7}$		
$t_f = \frac{w}{v_s \cos \theta} = \frac{2v_s \sin \theta}{g} $ (8) (from (6) & (7))	0.5	
From (8), v_s is fixed by the angle θ and the width of the strait w		
$v_s = \sqrt{\frac{gw}{\sin 2\theta}} \ . \tag{9}$		
$\therefore t_s = -\tau \ln \left(1 - \frac{1}{v_\infty} \sqrt{\frac{gw}{\sin 2\theta}} \right), \qquad \text{(Substitute (9) in (5))}$		1.5
And $t_f = \frac{2\sin\theta}{g} \sqrt{\frac{gw}{\sin 2\theta}} = \sqrt{\frac{2w\tan\theta}{g}} $ (Substitute (9) in (8))	0.5	

(c)

Therefore, total time is:
$$T = t_s + t_f = -\tau \ln \left(1 - \frac{1}{v_{\infty}} \sqrt{\frac{gw}{\sin 2\theta}} \right) + \sqrt{\frac{2w \tan \theta}{g}}$$

The values of the parameters are: B=10.0 T, I= 2424 A, L=2.00 m, R=1.0 Ω , g=10 m/s², m=80 kg, and w=1000 m.

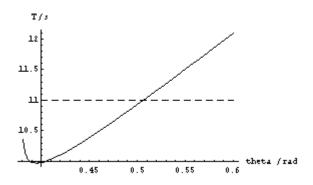
Then
$$\tau = \frac{mR}{B^2 L^2} = \frac{(80)(1.0)}{(10.0)^2 (2.00)^2} = 0.20 \text{ s.}$$

$$v_{\infty}(\theta) = \frac{2424}{(10.0)(2.00)} \left(1 - \frac{(80)(10)}{(10.0)(2.00)(2424)} \sin \theta \right)$$
$$= 121(1 - 0.0165 \sin \theta)$$

So,

$$T = t_s + t_f = -0.20 \ln \left(1 - \frac{100}{v_{\infty}} \frac{1}{\sqrt{\sin 2\theta}} \right) + 14.14 \sqrt{\tan \theta}$$

By plotting T as a function of θ , we obtain the following graph:



Note that the lower bound for the range of θ to plot may be determined by the condition $v_s / v_{\infty} < 1$ (or the argument of ln is positive), and since mg/BLI is small (0.0165), $v_{\infty} \approx IR/BL$ (= 121 m/s), we have the condition $\sin(2\theta) > 0.68$, i.e. $\theta > 0.37$. So one may start plotting from $\theta = 0.38$.

From the graph, for θ within the range (~0.38, 0.505) radian the time T is within 11 s.

Labeling: 0.1 each axis

Unit: 0.1 each axis

Proper Range in θ:
0.3 lower limit
(more than 0.37, less than 0.5),
0.2 upper limit
(more than 0.5 and less than 0.6)

Proper shape of curve: 0.2

Accurate intersection at $\theta = 0.5$: 0.4

1.5

(d)

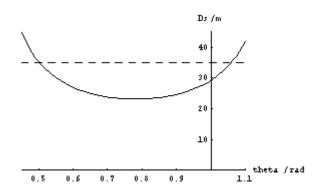
However, there is another constraint, i.e. the length of rail D. Let D_s be the distance travelled during the time interval t_s

$$D_{s} = \int_{0}^{t_{s}} v(t)dt = v_{\infty} \int_{0}^{t_{s}} (1 - e^{-t/\tau}) dt = v_{\infty} (t + \tau e^{-\beta t})^{s} = v_{\infty} [t_{s} - \tau (1 - e^{-\beta t})] = v_{\infty} t_{s} - v(t_{s}) \tau$$

i.e.

$$D_{s} = -\tau \left[v_{\infty}(\theta) \ln \left(1 - \frac{1}{v_{\infty}(\theta)} \sqrt{\frac{gw}{\sin 2\theta}} \right) + \sqrt{\frac{gw}{\sin 2\theta}} \right]$$

The graph below shows D_s as a function of θ .



It is necessary that $D_s \le D$, which means θ must range between .5 and 1.06 radians.

In order to satisfy both conditions, θ must range between 0.5 & 0.505 radians.

(Remarks: Using the formula for t_f , t_s & D, we get

At
$$\theta = 0.507$$
, $t_f = 10.540$, $t_s = 0.466$, giving T = 11.01 s, & D = 34.3 m

At
$$\theta = 0.506$$
, $t_f = 10.527$, $t_s = 0.467$, giving T = 10.99 s, & D = 34.4 m

At
$$\theta = 0.502$$
, $t_f = 10.478$, $t_s = 0.472$, giving T = 10.95 s, & D = 34.96 m

At
$$\theta = 0.50$$
, $t_f = 10.453$, $t_s = 0.474$, giving T = 10.93 s, & D = 35.2 m,

So the more precise angle range is between 0.502 to 0.507, but students are not expected to give such answers.

To 2 sig fig T = 11 s. Range is 0.50 to 0.51 (in degree: 28.6° to 29.2° or 29°)

0.5

Labeling: 0.1 each axis

Unit: 0.1 each axis

Proper Range in θ:
0.3 lower limit (more than 0.4, less than 0.49),
0.2 upper limit (more than 0.51

Proper shape of curve: 0.2

and less than 1.1)

Accurate intersection at $\theta = 0.5$: 0.4

0.5

2.5

<u>Alternate Solution (Not taking induced emf into consideration)</u>:

If induced emf is not taken into account, there is no induced current, so the net force acting on the combined mass of the young man and rod is

 $F_{N} = BIL - mg\sin\theta .$

0.2 BIL $0.2 mg \sin \theta$

0.2

And we have instead

 $dv/dt = \alpha,$ $\alpha = BIL/m - g\sin\theta.$

 $\therefore v(t) = \alpha t$

 $\therefore v_s = v(t_s) = \alpha t_s$

 $\ldots r_s = r(r_s) - \omega r_s$

 $t_f = \frac{2v_s \sin \dot{e}}{g} = \frac{2\alpha t_s \sin \dot{e}}{g} .$

Therefore,

where

and

 $w = (v_s \cos \dot{e})t_f = \frac{\alpha^2 t_s^2 \sin 2\dot{e}}{g},$

giving

 $t_s = \frac{1}{\alpha} \sqrt{\frac{gw}{\sin 2\dot{e}}}$ 0.5

and

 $t_f = \sqrt{\frac{2w\tan\theta}{g}} \,. \tag{0.5}$

Hence,

$$T = t_s + t_f = \frac{1}{\alpha} \sqrt{\frac{gw}{\sin 2\dot{e}}} + \sqrt{\frac{2w \tan \theta}{g}} = \frac{\sqrt{wg}}{\alpha} \left[\frac{1 + 2\left(\frac{\alpha}{g}\right) \sin \theta}{\sqrt{\sin 2\dot{e}}} \right].$$

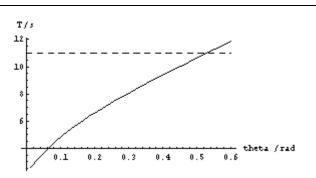
where $\alpha = BIL/m - g\sin\theta$.

The values of the parameters are: B=10.0 T, I= 2424 A, L=2.00m, R=1.0 Ω , g=10 m/s², m=80 kg, and w=1000 m. Then,

 $T = \frac{100}{\alpha} \frac{\left[1 + 0.20\alpha \sin \theta\right]}{\sqrt{\sin 2\dot{e}}}$ where $\alpha = 606 - 10\sin \theta$

0.3

2

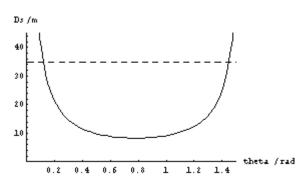


For θ within the range (~0, 0.52) radian the time *T* is within 11 s.

However, there is another constraint, i.e. the length of rail D. Let D_s be the distance travelled during the time interval t_s

$$D_s = \frac{gw}{2\alpha \sin 2\theta} = \frac{5000}{\alpha \sin 2\theta}$$

which is plotted below



It is necessary that $D_s \le D$, which means θ must range between 0.11 and 1.43 radians.

In order to satisfy both conditions, θ must range between 0.11 & 0.52 radians.

Labeling: 0.1 each axis	
Unit: 0.1 each axis	
Proper Range in θ: 0.1 lower limit (more than 0, less than 0.5), 0.2 upper limit (more than 0.52 and less than 0.8)	
Proper shape of curve: 0.2	
Accurate intersection at $\theta = 0.52$: 0.4	1.3
Labeling: 0.1 each axis	
Unit: 0.1 each axis	
Proper Range in θ: 0.1 lower limit (more than 0.08, less than 0.11), 0.1 upper limit (more than 0.52 and less than 1.5)	
Proper shape of curve: 0.2	
Accurate	

1.2

0.5

intersection at

 $\theta = 0.11:0.4$

Question 3 - Marking Scheme

(a) Since
$$W(v) = 4\pi \left(\frac{M}{2\pi R T}\right)^{3/2} v^2 e^{-Mv^2/(2RT)}$$
,

$$\overline{v} = \int_0^\infty v \ W(v) \ dv =$$

$$= \int_0^\infty v \ 4\pi \left(\frac{M}{2\pi R T}\right)^{3/2} v^2 e^{-Mv^2/(2RT)} \ dv$$

$$= \int_0^\infty 4\pi \left(\frac{M}{2\pi R T}\right)^{3/2} v^3 e^{-Mv^2/(2RT)} \ dv$$

$$= 4\pi \left(\frac{M}{2\pi R T}\right)^{3/2} \int_0^\infty v^3 e^{-Mv^2/(2RT)} \ dv$$

$$= 4\pi \left(\frac{M}{2\pi R T}\right)^{3/2} \frac{4R^2 T^2}{2M^2}$$

$$= \sqrt{\frac{8RT}{\pi M}}$$

Marking Scheme:

Performing the integration correctly: Simplifying

1 mark 0.5 marks

Subtotal for the section

1.5

marks

(b) Assuming an ideal gas, PV = N k T, so that the concentration of the gas molecules, n, is given by

$$n = \frac{N}{V} = \frac{P}{k T}$$

the impingement rate is given by

$$J = \frac{1}{4} n \overline{v}$$

$$= \frac{1}{4} \frac{P}{k T} \sqrt{\frac{8 R T}{\pi M}}$$

$$= P \sqrt{\frac{8 R T}{16 k^2 T^2 \pi M}}$$

$$= P \sqrt{\frac{N_A k}{2 k^2 T \pi M}}$$

$$= P \sqrt{\frac{1}{2 k T \pi m}}$$

$$= \frac{P}{\sqrt{2 \pi m k T}}$$

where we have note that $R = N_A$ k and $m = \frac{M}{N_A}$ (N_A being Avogadro number).

Marking Scheme:

Using ideal gas formula to estimate concentration of gas molecules: 0.7 marks

Simplifying expression: 0.4 marks

Using R = N k, and the formula for m; (0.2 mark each) 0.4 marks

Subtotal for the section 1.5

<u>marks</u>

(c) Assuming close packing, there are approximately 4 molecules in an area of $16 r^2$ m². Thus, the number of molecules in $1 m^2$ is given by

$$n_1 = \frac{4}{16 (3.6 \times 10^{-10})^2} = 1.9 \times 10^{18} \text{ m}^{-2}$$

However at (273 + 300) K and 133 Pa, the impingement rate for oxygen is

$$J = \frac{P}{\sqrt{2 \pi mkT}}$$

$$= \frac{133}{\sqrt{2 \pi \left(\frac{32 \times 10^{-3}}{6.02 \times 10^{23}}\right) (1.38 \times 10^{-23})573}}$$

$$= 2.6 \times 10^{24} \text{ m}^{-2} \text{ s}^{-1}$$

Therefore, the time needed for the deposition is $\frac{n_1}{J} = 0.7 \ \mu s$

The calculated time is too short compared with the actual processing.

Marking Scheme:

Estimation of number of molecules in 1 m ² :	0.4 marks
Calculation the impingement rate:	0.6 marks
Taking note of temperature in Kelvin	0.3 marks
Calculating the time	0.4 marks
Subtotal for the section	1.7

<u>marks</u>

(d) With activation energy of 1 eV and letting the velocity of the oxygen molecule at this energy is v_I , we have

$$\frac{1}{2} m v_1^2 = 1.6 \times 10^{-19} \text{ J}$$

 $\Rightarrow v_1 = 2453.57 \text{ ms}^{-1}$

At a temperature of 573 K, the distribution of the gas molecules is

We can estimate the fraction of the molecules with speed greater than 2454 ms⁻¹ using the trapezium rule (or any numerical techniques) with ordinates at 2453, 2453 + 500, 2453 +1000. The values are as follows:

Velocity, v	Probability, $W(v)$
2453	1.373 x 10 ⁻¹⁰
2953	2.256 x 10 ⁻¹⁴
3453	6.518 x 10 ⁻¹⁹

Using trapezium rule, the fraction of molecules with speed greater than 2453 ms⁻¹ is given by

fraction of molecules =
$$\frac{500}{2}$$
 [(1.373×10⁻¹⁰)+ (2 × 2.256×10⁻¹⁴)+ (6.518 × 10⁻¹⁹)]
 $f = 3.43 \times 10^{-8}$

Thus the time needed for the deposition is given by 0.7 $\mu s/(3.43 \text{ x } 10^{-8})$ that is 20.4 s

Marking Scheme

Computing the value of the cut-off energy or velocity:

marks

Estimating the fraction of molecules

Correct method of final time

Correct value of final time

Subtotal for the section

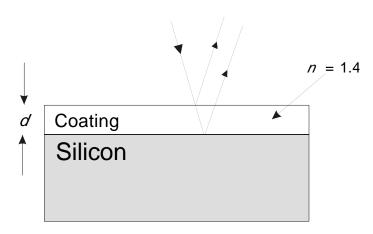
0.6

marks

2.8

<u>marks</u>

(e) For destructive interference, optical path difference = $2 d = \frac{\lambda'}{2}$ where $\lambda' = \frac{\lambda_{\text{air}}}{n}$ is the wavelength in the coating.



The relation is given by:

$$d = \frac{\lambda_{\text{air}}}{4 n}$$

Plugging in the given values, one gets d = 105 or 105.2 nm.

Derive equation:

Finding the optical path length marks	0.2
Knowing that there is a phase change at the reflection marks	0.5
Putting everything together to get the final expression marks	0.6
Subtotal:	1.3 marks
Computation of <i>d</i> : Getting the correct number of significant figures: Subtotal:	0.6 marks 0.6 marks 1.2 marks
Subtotal for Section	2.5 marks
TOTAL	10 marks