Solution 1

(a) $m \ddot{X}_{n}=S\left(X_{n+1}-X_{n}\right)-S\left(X_{n}-X_{n-1}\right)$.	0.7
(b) Let $X_{n}=A \sin n k a \cos (\omega t+\alpha)$, which has a harmonic time dependence. By analogy with the spring, the acceleration is $\ddot{X}_{n}=-\omega^{2} X_{n}$.	
Substitute into (a): $\quad-m A \omega^{2} \sin n k a=A S\{\sin (n+1) k a-2 \sin n k a+\sin (n-1) k a\}$	
$=-4 S A \sin n k a \sin ^{2} _k a$.	0.6
Hence $\omega^{2}=(4 S / m) \sin ^{2} _k a$.	0.2
To determine the allowed values of k, use the boundary condition $\sin (N+1) k a=\sin k L=0$.	0.7
The allowed wave numbers are given by $k L=\pi, 2 \pi, 3 \pi, \ldots, N \pi$ (N in all),	0.3
and their corresponding frequencies can be computed from $\omega=\omega_{0} \sin __{-} k a$,	
in which $\omega_{\max }=\omega_{0}=2(S / m)$ - is the maximum allowed frequency.	0.4
(c) $\langle E(\omega)\rangle=\frac{\sum_{p=0}^{\infty} p \hbar \omega P_{p}(\omega)}{\sum_{p=0}^{\infty} P_{p}(\omega)}$	
First method: $\frac{\sum_{n=0}^{\infty} n \hbar \omega e^{-n \hbar \omega / k_{B} T}}{\sum_{n=0}^{\infty} e^{-n \hbar \omega / k_{B} T}}=k_{B} T^{2} \frac{\partial}{\partial T} \ln \sum_{n=0}^{\infty} e^{-n \hbar \omega / k_{B} T}$	1.5
The sum is a geometric series and is $\left\{1-e^{-\hbar \omega / k_{B} T}\right\}^{-1}$	0.5
We find $\langle E(\omega)\rangle=\frac{\hbar \omega}{e^{\hbar \omega / k_{B} T}-1}$.	
Alternatively: denominator is a geometric series $=\left\{1-e^{-\hbar \omega / k_{B} T}\right\}^{-1}$	(0.5)
Numerator is $k_{B} T^{2}(\mathrm{~d} / \mathrm{dT})$ (denominator) $=e^{-\hbar \omega / k_{B} T}\left\{1-e^{-\hbar \omega / k_{B} T}\right\}^{-2}$ and result follows.	(1.5)

A non-calculus method:

Let $D=1+e^{-x}+e^{-2 x}+e^{-3 x}+\ldots$, where $x=\hbar \omega / k_{\mathrm{B}} T$. This is a geometric series and equals $D=$
$1 /\left(1-e^{-x}\right)$. Let $N=e^{-x}+2 e^{-2 x}+3 e^{-3 x}+\ldots$. The result we want is N / D. Observe

$$
\begin{array}{rlrl}
D-1 & =\mathrm{e}^{-x}+\mathrm{e}^{-2 x}+\mathrm{e}^{-3 x}+\mathrm{e}^{-4 x}+\mathrm{e}^{-5 x}+\ldots \ldots . . \\
(D-1) e^{-x} & & \mathrm{e}^{-2 x}+\mathrm{e}^{-3 x}+\mathrm{e}^{-4 x}+\mathrm{e}^{-5 x}+\ldots \ldots \ldots \\
(D-1) e^{-2 x} & = & \mathrm{e}^{-3 x}+\mathrm{e}^{-4 x}+\mathrm{e}^{-5 x}+\ldots .
\end{array}
$$

Hence $N=(D-1) D$ or $N / D=D-1=\frac{e^{-x}}{1-e^{-x}}=\frac{1}{e^{x}-1}$.
(d) From part (b), the allowed k values are $\pi / L, 2 \pi / L, \ldots, N \pi / L$.

Hence the spacing between allowed k values is π / L, so there are $(L / \pi) \Delta k$ allowed modes in the	1.0
wave-number interval $\Delta k($ assuming $\Delta k \gg \pi / L)$.	0.5
(e) Since the allowed k are $\pi / L, \ldots, N \pi / L$, there are N modes.	0.5
Follow the problem: $\mathrm{d} \omega / \mathrm{d} k=_a \omega_{0} \cos _k a$ from part (a) \& (b) $=\frac{1}{2} a \sqrt{\omega_{\max }^{2}-\omega^{2}}, \omega_{\max }=\omega_{0}$. This second form is more convenient for integration.	

The number of modes $\mathrm{d} n$ in the interval $\mathrm{d} \omega$ is

$$
\begin{gather*}
d n=(L / \pi) \Delta k=(L / \pi)(\mathrm{d} k / \mathrm{d} \omega) \mathrm{d} \omega \\
=(L / \pi)\left\{_{-} a \omega_{0} \cos { }_{-} k a\right\}^{-1} \mathrm{~d} \omega \\
=\frac{L}{\pi} \frac{2}{a} \frac{1}{\sqrt{\omega_{\max }^{2}-\omega^{2}}} d \omega \\
\quad=\frac{2(N+1)}{\pi} \frac{1}{\sqrt{\omega_{\max }^{2}-\omega^{2}}} d \omega \tag{0.5}
\end{gather*}
$$

0.5 for eitl

This part is necessary f E_{T} below,
but not for number of modes
Total number of modes $=\int d n=\int_{0}^{\omega_{\max }} \frac{2(N+1)}{\pi} \frac{d \omega}{\sqrt{\omega_{\max }^{2}-\omega^{2}}}=N+1 \approx N$ for large N.

Total crystal energy from (c) and $\mathrm{d} n$ of part (e) is given by

$$
E_{T}=\frac{2 N}{\pi} \int_{0}^{\omega_{\max }} \frac{\hbar \omega}{e^{\hbar \omega / k_{B} T}-1} \frac{d \omega}{\sqrt{\omega_{\max }^{2}-\omega^{2}}}
$$

(f) Observe first from the last formula that E_{T} increases monotonically with temperature since

$$
\left\{e^{\hbar \omega / k T}-1\right\}^{-1} \text { is increasing with } T
$$

When $T \rightarrow 0$, the term -1 in the last result may be neglected in the denominator so

$$
\begin{aligned}
& E_{T} \approx_{T \rightarrow 0} \frac{2 N}{\pi} \int \hbar \omega e^{-\hbar \omega / k_{B} T} \frac{1}{\sqrt{\omega_{\max }^{2}-\omega^{2}}} d \omega \\
& =\frac{2 N}{\hbar \pi \omega_{\max }}\left(k_{B} T\right)^{2} \int_{0}^{\infty} \frac{x e^{-x}}{\sqrt{1-\left(k_{B} T x / \hbar \omega_{\max }\right)^{2}}} d x
\end{aligned}
$$

which is quadratic in T (denominator in integral is effectively unity) hence C_{V} is linear in T

Alternatively, if the summation is retained, we have

$$
\begin{align*}
E_{T} & =\frac{2 N}{\pi} \sum_{\omega} \frac{\hbar \omega}{e^{\hbar \omega / k_{B} T}-1} \frac{\Delta \omega}{\sqrt{\omega_{\max }^{2}-\omega^{2}}} \rightarrow_{T \rightarrow 0} \frac{2 N}{\pi} \sum_{\omega} \hbar \omega e^{-\hbar \omega / k_{B} T} \frac{\Delta \omega}{\sqrt{\omega_{\max }^{2}-\omega^{2}}} \\
& =\frac{2 N}{\pi} \frac{\left(k_{B} T\right)^{2}}{\hbar \omega} \sum_{y} e^{-y} y \Delta y \tag{0.5}
\end{align*}
$$

When $T \rightarrow \infty$, use $e^{x} \approx 1+x$ in the denominator,

$$
E_{T} \approx{ }_{T \rightarrow \infty} \frac{2 N}{\pi} \int_{0}^{\omega_{\max }} \frac{\hbar \omega}{\hbar \omega / k_{B} T} \frac{1}{\sqrt{\omega_{\max }^{2}-\omega^{2}}} d \omega=\frac{2 N}{\pi} k_{B} T \frac{\pi}{2}
$$

0.2

0.1
which is linear; hence $C_{V} \rightarrow N k_{\mathrm{B}}=R$, the universal gas constant. This is the Dulong-Petit rule.
Alternatively, if the summation is retained, write denominator as $e^{\hbar \omega / k_{B} T}-1 \approx \hbar \omega / k_{B} T$ and $E_{T} \rightarrow_{T \rightarrow \infty} \frac{2 N}{\pi} k_{B} T \sum_{\omega} \frac{\Delta \omega}{\sqrt{\omega_{\max }^{2}-\omega^{2}}}$ which is linear in T, so C_{V} is constant.

Sketch of C_{V} versus T :

Answer sheet: Question 1

(a) Equation of motion of the $n^{\text {th }}$ mass is:

$$
m \ddot{X}_{n}=S\left(X_{n+1}-X_{n}\right)-S\left(X_{n}-X_{n-1}\right)
$$

(b) Angular frequencies ω of the chain's vibration modes are given by the equation:

$$
\omega^{2}=(4 S / m) \sin ^{2} _k a .
$$

Maximum value of ω is: $\quad \omega_{\max }=\omega_{0}=2(S / m)^{-}$
The allowed values of the wave number k are given by:

$$
\pi / L, 2 \pi / L, \ldots, N \pi / L
$$

How many such values of k are there? N
(f) The average energy per frequency mode ω of the crystal is given by:

$$
\langle E(\omega)\rangle=\frac{\hbar \omega}{e^{\hbar \omega / k_{B} T}-1}
$$

(g) There are how many allowed modes in a wave number interval Δk ?

$$
(L / \pi) \Delta k
$$

(e) The total number of modes in the lattice is: N

Total energy E_{T} of crystal is given by the formula:

$$
E_{T}=\frac{2 N}{\pi} \int_{0}^{\omega_{\max }} \frac{\hbar \omega}{e^{\hbar \omega / k_{B} T}-1} \frac{d \omega}{\sqrt{\omega_{\max }^{2}-\omega^{2}}}
$$

(h) A sketch (graph) of C_{V} versus absolute temperature T is shown below.

For $T \ll 1, C_{V}$ displays the following behaviour: C_{V} is linear in T.
As $T \rightarrow \infty, C_{V}$ displays the following behaviour: $C_{V} \rightarrow N k_{\mathrm{B}}=R$, the universal gas constant.

Solution to Question 2: The Rail Gun

Proper Solution (taking induced emf into consideration):
(a)

Let I be the current supplied by the battery in the absence of back emf.
Let i be the induced current by back emf ε_{b}.

Since $\varepsilon_{b}=d \phi / d t=d(B L x) / d t=B L v, \therefore i=B l v / R$.

Net current, $I_{N}=I-i=I-B L v / R$.
Forces parallel to rail are:
Force on rod due to current is $F_{c}=B L I_{N}=B L(I-B L v / R)=B L I-B^{2} L^{2} v / R$.
Net force on rod and young man combined is $F_{N}=F_{c}-m g \sin \theta$.

Newton's law: $\quad F_{N}=m a=m d v / d t$.

Equating (1) and (2), \& substituting for $F_{c} \&$ dividing by m, we obtain the acceleration $d v / d t=\alpha-v / \tau, \quad$ where $\alpha=B I L / m-g \sin \theta$ and $\tau=m R / B^{2} L^{2}$.
(b)(i)

Since initial velocity of rod $=0$, and let velocity of rod at time t be $v(t)$, we have

$$
\begin{gather*}
v(t)=v_{\infty}\left(1-e^{-t / \tau}\right) \tag{3}\\
\text { where } \quad v_{\infty}(\theta)=\alpha \tau=\frac{I R}{B L}\left(1-\frac{m g}{B L I} \sin \theta\right) .
\end{gather*}
$$

0.5
.

Let t_{s} be the total time he spent moving along the rail, and v_{s} be his velocity when he leaves the rail, i.e.

$$
\begin{align*}
& v_{s}=v\left(t_{s}\right)=v_{\infty}\left(1-e^{-t_{s} / \tau}\right) . \tag{4}\\
& \therefore t_{s}=-\tau \ln \left(1-v_{s} / v_{\infty}\right) \tag{5}
\end{align*}
$$

0.5
(b) (ii)

Let t_{f} be the time in flight:

$$
t_{f}=\frac{2 v_{s} \sin \grave{e}}{g}
$$

He must travel a horizontal distance w during t_{f}.

$$
\begin{gather*}
w=\left(v_{s} \cos \grave{e}\right) t_{f} \tag{7}\\
t_{f}=\frac{w}{v_{s} \cos \theta}=\frac{2 v_{s} \sin \theta}{g}
\end{gather*}
$$

0.5
0.5

From (8), v_{s} is fixed by the angle θ and the width of the strait w

$$
\begin{equation*}
v_{s}=\sqrt{\frac{g w}{\sin 2 \theta}} . \tag{9}
\end{equation*}
$$

$\therefore t_{s}=-\tau \ln \left(1-\frac{1}{v_{\infty}} \sqrt{\frac{g w}{\sin 2 \theta}}\right)$,
(Substitute (9) in (5))

And

$$
t_{f}=\frac{2 \sin \theta}{g} \sqrt{\frac{g w}{\sin 2 \theta}}=\sqrt{\frac{2 w \tan \theta}{g}} \quad \text { (Substitute (9) in (8)) }
$$

1.5
(c)

Therefore, total time is: $\quad T=t_{s}+t_{f}=-\tau \ln \left(1-\frac{1}{v_{\infty}} \sqrt{\frac{g w}{\sin 2 \theta}}\right)+\sqrt{\frac{2 w \tan \theta}{g}}$
The values of the parameters are: $\mathrm{B}=10.0 \mathrm{~T}, \mathrm{I}=2424 \mathrm{~A}, \mathrm{~L}=2.00 \mathrm{~m}, \mathrm{R}=1.0 \Omega$, $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~m}=80 \mathrm{~kg}$, and $\mathrm{w}=1000 \mathrm{~m}$.

Then $\tau=\frac{m R}{B^{2} L^{2}}=\frac{(80)(1.0)}{(10.0)^{2}(2.00)^{2}}=0.20 \mathrm{~s}$.

$$
\begin{aligned}
v_{\infty}(\theta) & =\frac{2424}{(10.0)(2.00)}\left(1-\frac{(80)(10)}{(10.0)(2.00)(2424)} \sin \theta\right) \\
& =121(1-0.0165 \sin \theta)
\end{aligned}
$$

So,

$$
T=t_{s}+t_{f}=-0.20 \ln \left(1-\frac{100}{v_{\infty}} \frac{1}{\sqrt{\sin 2 \theta}}\right)+14.14 \sqrt{\tan \theta}
$$

By plotting T as a function of θ, we obtain the following graph:

Note that the lower bound for the range of θ to plot may be determined by the condition $\mathrm{v}_{\mathrm{s}} / \mathrm{v}_{\infty}<1$ (or the argument of \ln is positive), and since $\mathrm{mg} /$ BLI is small $(0.0165), \mathrm{v}_{\infty} \approx I R / B L(=121 \mathrm{~m} / \mathrm{s})$, we have the condition $\sin (2 \theta)>0.68$, i.e. $\theta>0.37$. So one may start plotting from $\theta=0.38$.

From the graph, for θ within the range $(\sim 0.38,0.505)$ radian the time T is within 11 s.

Labeling:
0.1 each axis

Unit:
0.1 each axis

Proper Range in
θ :
0.3 lower limit (more than 0.37, less than 0.5),
0.2 upper limit (more than 0.5 and less than 0.6)

Proper shape of curve: 0.2

Accurate intersection at $\theta=0.5: 0.4$
(d)

However, there is another constraint, i.e. the length of rail D. Let D_{s} be the distance travelled during the time interval t_{s}
$D_{s}=\int_{0}^{t_{s}} v(t) d t=v_{\infty} \int_{0}^{t_{s}}\left(1-e^{-t / \tau}\right) d t=v_{\infty}\left(t+\tau e^{-\beta t}\right) d=v_{\infty}\left[{ }_{s}-\tau\left(1-e^{-\beta t}\right)\right]=v_{\infty} t_{s}-v\left(t_{s}\right) \tau$
i.e.

$$
D_{s}=-\tau\left[v_{\infty}(\theta) \ln \left(1-\frac{1}{v_{\infty}(\theta)} \sqrt{\frac{g w}{\sin 2 \theta}}\right)+\sqrt{\frac{g w}{\sin 2 \theta}}\right]
$$

0.5

Labeling:
0.1 each axis

Unit:
0.1 each axis

Proper Range in θ :
0.3 lower limit (more than 0.4, less than 0.49), 0.2 upper limit (more than 0.51 and less than 1.1)

Proper shape of curve: 0.2

Accurate intersection at $\theta=0.5$: 0.4

Alternate Solution (Not taking induced emf into consideration):

If induced emf is not taken into account, there is no induced current, so the net force acting on the combined mass of the young man and rod is

$$
F_{N}=B I L-m g \sin \theta .
$$

And we have instead
0.2 BIL $0.2 \mathrm{mg} \sin \theta$

Hence,

$$
\begin{gathered}
T=t_{s}+t_{f}=\frac{1}{\alpha} \sqrt{\frac{g w}{\sin 2 \grave{e}}}+\sqrt{\frac{2 w \tan \theta}{g}}=\frac{\sqrt{w g}}{\alpha} \frac{\left[1+2\left(\frac{\alpha}{g}\right) \sin \theta\right]}{\sqrt{\sin 2 \grave{e}}} . \\
\text { where } \alpha=B I L / m-g \sin \theta .
\end{gathered}
$$

The values of the parameters are: $\mathrm{B}=10.0 \mathrm{~T}, \mathrm{I}=2424 \mathrm{~A}, \mathrm{~L}=2.00 \mathrm{~m}$, $\mathrm{R}=1.0 \Omega, \mathrm{~g}=10 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~m}=80 \mathrm{~kg}$, and $\mathrm{w}=1000 \mathrm{~m}$. Then,

$$
T=\frac{100}{\alpha} \frac{[1+0.20 \alpha \sin \theta]}{\sqrt{\sin 2 \grave{e}}}
$$

$T=\frac{100}{\alpha} \frac{[1+0.20 \alpha \sin \theta]}{\sqrt{\sin 2 \grave{e}}}$
where $\alpha=606-10 \sin \theta$.
giving

$$
t_{s}=\frac{1}{\alpha} \sqrt{\frac{g w}{\sin 2 \grave{e}}}
$$

and

$$
t_{f}=\sqrt{\frac{2 w \tan \theta}{g}}
$$

Question 3-Marking Scheme
(a) \quad Since $W(v)=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{2} e^{-M v^{2} /(2 R T)}$,

$$
\begin{aligned}
\bar{v} & =\int_{0}^{\infty} v W(v) d v= \\
& =\int_{0}^{\infty} v 4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{2} e^{-M v^{2} /(2 R T)} d v \\
& =\int_{0}^{\infty} 4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} v^{3} e^{-M v^{2} /(2 R T)} d v
\end{aligned}
$$

$$
=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} \int_{0}^{\infty} v^{3} e^{-M v^{2} /(2 R T)} d v
$$

$$
=4 \pi\left(\frac{M}{2 \pi R T}\right)^{3 / 2} \frac{4 R^{2} T^{2}}{2 M^{2}}
$$

$$
=\sqrt{\frac{8 R T}{\pi M}}
$$

Marking Scheme:

Performing the integration correctly:
1 mark
Simplifying
0.5 marks

Subtotal for the section 1.5
marks
(b) Assuming an ideal gas, $P V=N k T$, so that the concentration of the gas molecules, n, is given by

$$
n=\frac{N}{V}=\frac{P}{k T}
$$

the impingement rate is given by

$$
\begin{aligned}
J & =\frac{1}{4} n \bar{v} \\
& =\frac{1}{4} \frac{P}{k T} \sqrt{\frac{8 R T}{\pi M}} \\
& =P \sqrt{\frac{8 R T}{16 k^{2} T^{2} \pi M}} \\
& =P \sqrt{\frac{N_{A} k}{2 k^{2} T \pi M}} \\
& =P \sqrt{\frac{1}{2 k T \pi m}} \\
& =\frac{P}{\sqrt{2 \pi m k T}}
\end{aligned}
$$

where we have note that $R=N_{A} k$ and $m=\frac{M}{N_{A}}$ (N_{A} being Avogadro number).

Marking Scheme:

Using ideal gas formula to estimate concentration of gas molecules:
(c) Assuming close packing, there are approximately 4 molecules in an area of $16 r^{2}$ m^{2}. Thus, the number of molecules in $1 \mathrm{~m}^{2}$ is given by

$$
n_{1}=\frac{4}{16\left(3.6 \times 10^{-10}\right)^{2}}=1.9 \times 10^{18} \mathrm{~m}^{-2}
$$

However at $(273+300) \mathrm{K}$ and 133 Pa , the impingement rate for oxygen is

$$
\begin{aligned}
J & =\frac{P}{\sqrt{2 \pi m k T}} \\
& =\frac{133}{\sqrt{2 \pi\left(\frac{32 \times 10^{-3}}{6.02 \times 10^{23}}\right)\left(1.38 \times 10^{-23}\right) 573}} \\
& =2.6 \times 10^{24} \mathrm{~m}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

Therefore, the time needed for the deposition is $\frac{\boldsymbol{n}_{1}}{\boldsymbol{J}}=0.7 \mu \mathrm{~s}$
The calculated time is too short compared with the actual processing.
Marking Scheme:
Estimation of number of molecules in $1 \mathrm{~m}^{2}$:
0.4 marks

Calculation the impingement rate:
0.6 marks

Taking note of temperature in Kelvin
0.3 marks

Calculating the time
0.4 marks

Subtotal for the section
(d) With activation energy of 1 eV and letting the velocity of the oxygen molecule at this energy is v_{l}, we have

$$
\begin{aligned}
& \frac{1}{2} m v_{1}^{2}=1.6 \times 10^{-19} \mathrm{~J} \\
& \Rightarrow v_{1}=2453.57 \mathrm{~ms}^{-1}
\end{aligned}
$$

At a temperature of 573 K , the distribution of the gas molecules is

We can estimate the fraction of the molecules with speed greater than $2454 \mathrm{~ms}^{-1}$ using the trapezium rule (or any numerical techniques) with ordinates at 2453, $2453+500,2453+1000$. The values are as follows:

Velocity, v	Probability, $W(v)$
2453	1.373×10^{-10}
2953	2.256×10^{-14}
3453	6.518×10^{-19}

Using trapezium rule, the fraction of molecules with speed greater than $2453 \mathrm{~ms}^{-1}$ is given by

$$
\begin{aligned}
\text { fraction of molecules } & =\frac{500}{2}\left[\left(1.373 \times 10^{-10}\right)+\left(2 \times 2.256 \times 10^{-14}\right)+\left(6.518 \times 10^{-19}\right)\right] \\
f & =3.43 \times 10^{-8}
\end{aligned}
$$

Thus the time needed for the deposition is given by $0.7 \mu \mathrm{~s} /\left(3.43 \times 10^{-8}\right)$ that is 20.4 s

Marking Scheme

Computing the value of the cut-off energy or velocity: marks
Estimating the fraction of molecules
Correct method of final time Correct value of final time
(e) For destructive interference, optical path difference $=2 d=\frac{\lambda^{\prime}}{2}$ where $\lambda^{\prime}=\frac{\lambda_{\text {air }}}{n}$ is the wavelength in the coating.

The relation is given by:

$$
d=\frac{\lambda_{\text {air }}}{4 n}
$$

Plugging in the given values, one gets $d=105$ or 105.2 nm .
Derive equation:
Finding the optical path length 0.2 marks
Knowing that there is a phase change at the reflection 0.5 marks
Putting everything together to get the final expression 0.6 marks
Subtotal: 1.3 marks
Computation of d :
Getting the correct number of significant figures:
Subtotal:
0.6 marks

Subtotal for Section
2.5 marks

TOTAL

