Name	Student No.	Country	Page No	Total No of pages

(1) : Determine the plane of polarization of the incident laser light.

(a) Relative orientation of diode laser and polarizer (difference in degree between the angular settings of the diode laser rotary stage and the polarizer rotary stage)

The difference in the two angles (in degree) $=$ \qquad (0.2 point)
(b) Brewster angle of incidence ${ }_{i}$ for the glass plate $=$ \qquad
Submit data on blank sheet
Graph of reflected laser power versus angular setting of the polarizer rotary stage

Angular setting of the polarizer rotary stage
for axis of polarization parallel to the plane of incidence $=$ \qquad
(2): Measure the reflectance $R_{p} \underline{\text { and }} R_{\underline{s}}$ of the semiconductor wafer
(a) Reflectance R_{p} (plane of polarization parallel to the plane of incidence)

Parameters of your instrument:
(i) Angular setting of the polarizer rotary stage $=$ \qquad
(ii) Angular setting of the diode laser rotary stage $=$ \qquad
(iii) Measured incidence laser power $I_{i}=$ \qquad (mW) (no point)

Measurement, calculation of R_{p} and graph of R_{p} versus incident angle
(b) Reflectance R_{s} (plane of polarization perpendicular to the plane of incidence)

Parameters of your instrument:
(i) Angular setting of the polarizer rotary stage $=$
(ii) Angular setting of the diode laser rotary stage $=$
(iii) Measured incidence laser power $I_{i}=$ \qquad (mW) (no point)

Measurement, calculation of R_{s} and graph of R_{s} versu incident angle
(3): Calculate the refractive index of the semiconductor sample
(a) Derivation of equation relating the refractive index n to $\pm \sqrt{R_{p}}$ and $\sqrt{R_{s}}$ (Submit derivation on blank sheet) (0.5 point)

The sign (s) of $\pm \sqrt{R_{p}}$: \qquad
\qquad
(b) Six values of n

angle of incidence -1	R_{p}	R_{s}	n
20			
30			
40			
50			
60			
80			

Mean and standard deviation $_$for n

$$
\begin{array}{r}
n(\text { mean }) \\
_^{n}=
\end{array}
$$

(c) Reflectance R_{s} and R_{p} of the semiconductor at normal incidence.

$R_{s}=$	$\%$
$R_{p}=$	$\%$

Refractive index $n=$ \qquad (0.6 point)

