[Marking Scheme]

Theoretical Question 2

Motion of an Electric Dipole in a Magnetic Field

(1)	1.0	(1a)
		➤ 0.2 obtain correct result for the <i>total force</i>
2.8		> 0.2 write down the correct equation of motion for the center
		of mass *eq.(1)
		> 0.2 obtain correct result for the <i>total torque</i> with respect to
		the center of mass
		➤ 0.2 write down the correct <i>equation of motion</i> for <i>rotation</i>
		around the center of mass *eq.(2)
		➤ 0.2 obtain correct result for the <i>moment of inertia</i> for
		rotation around the center of mass of the dipole *eq.(3)
	1.0	(1b)
		\triangleright 0.5 obtain correct expression for the <i>conserved quantity</i> \vec{P}
		*eq.(4)
		> 0.2 knowing that total kinetic energy is conserved
		\triangleright 0.3 obtain the correct expression for E in terms of V_{CM}
		and ω *eq.(5)
	0.8	(1c) prove that J is conserved
		\triangleright 0.3 for realizing the time derivative of J is zero
		> 0.5 for an explicit proof

(2)	1.0	(20)
(2)	1.2	(2a)
7.2		 0.2 knowing to use the proper conservation laws 0.2 knowing to use the initial condition to obtain the value of
1.2		the conserved quantities
		> 0.2 write down eq.(12) correctly
		\rightarrow 0.2 while down eq.(12) confecting \rightarrow 0.4 knowing ϕ should not vanish
		_ '
		> 0.2 obtain the correct <i>expression for</i> ω_c *eq.(14)
	3.0	(2b)
		\triangleright 0.3 knowing to use the conserved quantity J
		 0.3 knowing to use the initial condition to obtain the value of
		$ ightharpoonup 0.2$ knowing that $x_{CM} \ge 0$
		\triangleright 0.2 knowing that maximum distance d_m is reached when ω
		takes its minimum value
		\triangleright 0.2 knowing to discuss the cases $\omega_0 < \omega_c$, $\omega_0 > \omega_c$ and
		$\boldsymbol{\omega}_0 = \boldsymbol{\omega}_c \qquad *eq.(17)$
		\triangleright 0.6 obtain the correct <i>expression of</i> d_m for $\omega_0 < \omega_c$
		\triangleright 0.6 obtain the correct <i>expression of</i> d_m for $\omega_0 > \omega_c$
		*eq.(18)
		> 0.2 knowing that it takes infinite <i>time to reach the turning</i> point for $\omega_0 = \omega_c$
		\triangleright 0.4 obtain the correct expression of d_m for $\omega_0 = \omega_c$
	3.0	(3c)
		> 0.5 write down the <i>Coulomb force</i> term correctly *eq.(20)
		> 0.2 knowing that <i>there is a centrifugal force</i>
		> 0.8 write down the <i>centrifugal force term</i> correctly *eq.(21)
		> 0.5 knowing that <i>there is a magnetic force</i> term due to center
		of mass motion
		\triangleright 1.0 write down the <i>magnetic force term</i> correctly *eq(22)