[Marking Scheme] Theoretical Question 2

Motion of an Electric Dipole in a Magnetic Field

(1)	1.0	(1a)
		> 0.2 obtain correct result for the total force
2.8		0.2 write down the correct equation of motion for the center of mass *eq.(1)
		0.2 obtain correct result for the total torque with respect to the center of mass
		0.2 write down the correct equation of motion for rotation around the center of mass *eq.(2)
		0.2 obtain correct result for the moment of inertia for rotation around the center of mass of the dipole *eq.(3)
	1.0	(1b)
		0.5 obtain correct expression for the conserved quantity \vec{P} *eq.(4)
		> 0.2 knowing that total kinetic energy is conserved
		0.3 obtain the correct expression for E in terms of $v_{C M}$ and $\omega \quad$ *eq.(5)
	0.8	(1c) prove that J is conserved
		0.3 for realizing the time derivative of J is zero 0.5 for an explicit proof

(2) 7.2	1.2	(2a) > 0.2 knowing to use the proper conservation laws >0.2 knowing to use the initial condition to obtain the value of the conserved quantities >0.2 write down eq.(12) correctly > 0.4 knowing $\dot{\varphi}$ should not vanish >0.2 obtain the correct expression for $\omega_{c} \quad$ *eq.(14)
	3.0	(2b) 0.3 knowing to use the conserved quantity J 0.3 knowing to use the initial condition to obtain the value of J 0.2 knowing that $x_{C M} \geq 0$ 0.2 knowing that maximum distance d_{m} is reached when ω takes its minimum value 0.2 knowing to discuss the cases $\omega_{0}<\omega_{c}, \omega_{0}>\omega_{c}$ and $\omega_{0}=\omega_{c}$ 0.6 obtain the correct expression of d_{m} for $\omega_{0}<\omega_{c}$ 0.6 obtain the correct expression of d_{m} for $\omega_{0}>\omega_{c}$ *eq.(18) 0.2 knowing that it takes infinite time to reach the turning point for $\omega_{0}=\omega_{c}$ 0.4 obtain the correct expression of d_{m} for $\omega_{0}=\omega_{c}$
	3.0	(3c) 0.5 write down the Coulomb force term correctly *eq.(20) > 0.2 knowing that there is a centrifugal force >0.8 write down the centrifugal force term correctly *eq.(21) 0.5 knowing that there is a magnetic force term due to center of mass motion >1.0 write down the magnetic force term correctly *eq(22)

