[Marking Scheme]

Theoretical Question 1

When will the Moon become a Synchronous Satellite?

(1) 3.0	0.4	$\begin{aligned} & \text { location of center of mass } C \\ & >0.2 \text { for distance to Earth } \\ & >0.2 \text { for distance to Moon } \\ & \hline \end{aligned}$
3.0	0.4	$\begin{aligned} & \text { Orbital angular momentum of the Moon } \ell_{M} \\ & >0.2 \text { for formula } \\ & >0.2 \text { for numerical value } \end{aligned}$
	0.4	$\begin{aligned} & \text { spin angular momentum of the Moon } S_{M} \\ & >0.2 \text { for formula } \\ & >0.2 \text { for numerical value } \end{aligned}$
	0.4	Orbital angular momentum of the Earth ℓ_{E} >0.2 for formula >0.2 for numerical value
	0.4	$\begin{aligned} & \text { spin angular momentum of the Earth } S_{E} \\ & >0.2 \text { for formula } \\ & >0.2 \text { for numerical value } \end{aligned}$
	0.2	knowing total angular momentum of a system is the sum of orbital and spin angular momenta
	0.8	```total angular momentum of the Earth-Moon system \(L\) \(>0.2\) for order of magnitude \(>0.4\) for value to two significant digits \(>0.2\) for unit```
(2) 3.0	0.8	$\begin{aligned} & \text { Newton's form of Kepler's third law } \omega^{2} r^{3}=G\left(M_{E}+M\right) \\ & >0.6 \text { for } \omega^{2} r^{3}=\mathrm{constant} \\ & >0.2 \text { for expression of constant } G\left(M_{E}+M\right) \end{aligned}$
3.0	0.4	realizing total orbital angular momentum $\ell=\ell_{E}+\ell_{M}$ is a function of ω or alone
	0.2	realizing spin angular momentum of the Moon is negligible
	0.4	resorting to the law of conservation of total angular momentum
	1.2	period of rotation of the Earth T >0.3 for order of magnitude in units of second >0.4 for value to two significant digits >0.5 for providing an equation for finding T
(3)	0.2	0.2 for knowing $\Gamma=\left(\frac{r_{0}}{r}\right)^{6} \Gamma_{0}$
4.0	0.4	realizing relation between torque and rate of slowdown of Earth's rotation: $d S_{E} / d t=\Gamma$
	0.4	concluding $-\Gamma$ is equal to rate of increase of total orbital angular momentum of the Earth-Moon system: $d \ell / d t=-\Gamma$
	1.0	$\begin{aligned} & \text { current value of the torque } \Gamma_{0} \\ & >0.2 \text { for realizing } \ell \text { is related to } r \\ & >0.3 \text { for converting the derivative } d \ell / d t \text { to } d r / d t \end{aligned}$

| | >0.4 for value of Γ_{0} |
| :--- | :--- | :--- |
| | >0.1 for unit of torque |

