$27^{\text {th }}$ INTERNATIONAL PHYSICS OLYMPIAD OSLO, NORWAY

THEORETICAL COMPETITION
 JULY 21996

Solution Problem 1
a) The system of resistances can be redrawn as shown in the figure:

The equivalent drawing of the circuit shows that the resistance between point c and point A is 0.5Ω, and the same between point d and point B . The resistance between points A and B thus consists of two connections in parallel: the direct 1Ω connection and a connection consisting of two 0.5Ω resistances in series, in other words two parallel 1Ω connections. This yields

$$
R=\underline{\underline{0.5 \Omega}} .
$$

b) For a sufficiently short horizontal displacement Δs the path can be considered straight. If the corresponding length of the path element is ΔL, the friction force is given by

$$
\mu m g \frac{\Delta s}{\Delta L}
$$

and the work done by the friction force equals force times displacement:

$$
\mu m g \frac{\Delta s}{\Delta L} \cdot \Delta L=\mu m g \Delta s
$$

Adding up, we find that along the whole path the total work done by friction forces is $\mu \mathrm{mg} s$. By energy conservation this must equal the decrease $m g h$ in potential energy of the skier. Hence

$$
h=\underline{\underline{\mu s}}
$$

c) Let the temperature increase in a small time interval $d t$ be $d T$. During this time interval the metal receives an energy $P d t$.

The heat capacity is the ratio between the energy supplied and the temperature increase:

$$
C_{p}=\frac{P d t}{d T}=\frac{P}{d T / d t} .
$$

The experimental results correspond to

$$
\frac{d T}{d t}=\frac{T_{0}}{4} a\left[1+a\left(t-t_{0}\right)\right]^{-3 / 4}=T_{0} \frac{a}{4}\left(\frac{T_{0}}{T}\right)^{3} .
$$

Hence

$$
C_{p}=\frac{P}{d T / d t}=\frac{4 P}{\underline{a T_{0}{ }^{4}}} T^{3} .
$$

(Comment: At low, but not extremely low, temperatures heat capacities of metals follow such a T^{3} law.)
d)

Under stationary conditions the net heat flow is the same everywhere:

$$
\begin{gathered}
J=\sigma\left(T_{h}^{4}-T_{1}^{4}\right) \\
J=\sigma\left(T_{1}^{4}-T_{2}^{4}\right) \\
J=\sigma\left(T_{2}^{4}-T_{l}^{4}\right)
\end{gathered}
$$

Adding these three equations we get

$$
3 J=\sigma\left(T_{h}^{4}-T_{l}^{4}\right)=J_{0},
$$

where J_{0} is the heat flow in the absence of the heat shield. Thus $\xi=J / J_{0}$ takes the value

$$
\underline{\underline{\xi=\frac{1}{3}}} .
$$

e) The magnetic field can be determined as the superposition of the fields of two cylindrical conductors, since the effects of the currents in the area of intersection cancel. Each of the cylindrical conductors must carry a larger current I^{\prime}, determined so that the fraction I of it is carried by the actual cross section (the moon-shaped area).
The ratio between the currents I and I^{\prime} equals the ratio between the cross section areas:

$$
\frac{I}{I^{\prime}}=\frac{\left(\frac{\pi}{12}+\frac{\sqrt{3}}{8}\right) D^{2}}{\frac{\pi}{4} D^{2}}=\frac{2 \pi+3 \sqrt{3}}{6 \pi}
$$

Inside one cylindrical conductor carrying a current I^{\prime} Ampère's law yields at a distance r from the axis an azimuthal field

$$
B_{\phi}=\frac{\mu_{0}}{2 \pi r} \frac{I^{\prime} \pi r^{2}}{\frac{\pi}{4} D^{2}}=\frac{2 \mu_{0} I^{\prime} r}{\pi D^{2}} .
$$

The cartesian components of this are

$$
B_{x}=-B_{\phi} \frac{y}{r}=-\frac{2 \mu_{0} I^{\prime} y}{\pi D^{2}} ; \quad B_{y}=B_{\phi} \frac{x}{r}=\frac{2 \mu_{0} I^{\prime} x}{\pi D^{2}} .
$$

For the superposed fields, the currents are $\pm I^{\prime}$ and the corresponding cylinder axes are located at $x=\mp D / 4$.

The two x-components add up to zero, while the y-components yield

$$
B_{y}=\frac{2 \mu_{0}}{\pi D^{2}}\left[I^{\prime}(x+D / 4)-I^{\prime}(x-D / 4)\right]=\frac{\mu_{0} I^{\prime}}{\pi D}=\frac{6 \mu_{0} I}{\underline{\underline{(2 \pi+3 \sqrt{3}) D}}},
$$

i.e., a constant field. The direction is along the positive y-axis.

Solution problem 2

a) The potential energy gain eV is converted into kinetic energy. Thus

$$
\begin{aligned}
& \frac{1}{2} m v^{2}=e V \quad \text { (non-relativistically) } \\
& \frac{m c^{2}}{\sqrt{1-\mathrm{v}^{2} / c^{2}}}-m c^{2}=e V \quad \text { (relativistically). }
\end{aligned}
$$

Hence

$$
v=\left\{\begin{array}{lc}
\sqrt{2 e V / m} & \text { (non- relativistically) } \tag{1}\\
c \sqrt{1-\left(\frac{m c^{2}}{m c^{2}+e V}\right)^{2}} & \text { (relativistically) }
\end{array}\right.
$$

b) When $V=0$ the electron moves in a homogeneous static magnetic field. The magnetic Lorentz force acts orthogonal to the velocity and the electron will move in a circle. The initial velocity is tangential to the circle.

The radius R of the orbit (the "cyclotron radius") is determined by equating the centripetal force and the Lorentz force:

$$
e B v_{0}=\frac{m v_{0}^{2}}{R}
$$

i.e.

$$
\begin{equation*}
B=\frac{m v_{0}}{e R} \tag{2}
\end{equation*}
$$

From the figure we see that in the critical case the radius R of the circle satisfies

$$
\sqrt{a^{2}+R^{2}}=b-R
$$

By squaring we obtain

$$
a^{2}+R^{2}=b^{2}-2 b R+R^{2}
$$

i.e.

$$
R=\left(b^{2}-a^{2}\right) / 2 b
$$

Insertion of this value for the radius into the expression (2) gives the critical field

$$
B_{c}=\frac{m v_{0}}{e R}=\frac{2 b m v_{0}}{\left(b^{2}-a^{2}\right) e} .
$$

c) The change in angular momentum with time is produced by a torque. Here the azimuthal component F_{φ} of the Lorentz force $\vec{F}=(-e) \vec{B} \times \overrightarrow{\mathrm{v}}$ provides a torque $F_{\varphi} r$. It is only the radial component $\mathrm{v}_{r}=d r / d t$ of the velocity that provides an azimuthal Lorentz force.
Hence

$$
\frac{d L}{d t}=e B r \frac{d r}{d t},
$$

which can be rewritten as

$$
\frac{d}{d t}\left(L-\frac{e B r^{2}}{2}\right)=0 .
$$

Hence

$$
\begin{equation*}
C=\underline{\underline{L-\frac{1}{2}} e B r^{2}} \tag{3}
\end{equation*}
$$

is constant during the motion. The dimensionless number k in the problem text is thus $k=\frac{1}{2}$.
d) We evaluate the constant C, equation (3), at the surface of the inner cylinder and at the maximal distance r_{m} :

$$
0-\frac{1}{2} e B a^{2}=m v r_{m}-\frac{1}{2} e B r_{m}^{2}
$$

which gives

$$
\begin{equation*}
v=\frac{\frac{e B\left(r_{m}^{2}-a^{2}\right)}{2 m r_{m}} .}{\underline{\underline{2}} .} \tag{4}
\end{equation*}
$$

Alternative solution: One may first determine the electric potential $V(r)$ as function of the radial distance. In cylindrical geometry the field falls off inversely proportional to r, which requires a logarithmic potential, $V(s)=c_{1} \ln r+c_{2}$. When the two constants are determined to yield $V(a)=0$ and $V(b)=V$ we have

$$
V(r)=V \frac{\ln (r / a)}{\ln (b / a)} .
$$

The gain in potential energy, $s V\left(r_{m}\right)$, is converted into kinetic energy:

$$
\frac{1}{2} m v^{2}=e V \frac{\ln \left(r_{m} / a\right)}{\ln (b / a)} .
$$

Thus

$$
\begin{equation*}
v=\sqrt{\frac{2 e V \ln \left(r_{m} / a\right)}{m \ln (b / a)}} \tag{5}
\end{equation*}
$$

(4) and (5) seem to be different answers. This is only apparent since r_{m} is not independent parameter, but determined by B and V so that the two answers are identical.
e) For the critical magnetic field the maximal distance r_{m} equals b, the radius of the outer cylinder, and the speed at the turning point is then

$$
v=\frac{e B\left(b^{2}-a^{2}\right)}{2 m b} .
$$

Since the Lorentz force does not work, the corresponding kinetic energy $\frac{1}{2} \mathrm{~m} v^{2}$ equals eV (question a):

$$
v=\sqrt{2 e V / m} .
$$

The last two equations are consistent when

$$
\frac{e B\left(b^{2}-a^{2}\right)}{2 m b}=\sqrt{2 e V / m} .
$$

The critical magnetic field for current cut-off is therefore

$$
B_{c}=\frac{2 b}{\underline{\underline{b^{2}-a^{2}}} \sqrt{\frac{2 m V}{e}}} .
$$

f) The Lorentz force has no component parallel to the magnetic field, and consequently the velocity component v_{B} is constant under the motion. The corresponding displacement parallel to the cylinder axis has no relevance for the question of reaching the anode.

Let v denote the final azimuthal speed of an electron that barely reaches the anode.
Conservation of energy implies that

$$
\frac{1}{2} m\left(v_{B}^{2}+v_{\varphi}^{2}+v_{r}^{2}\right)+e V=\frac{1}{2} m\left(v_{B}^{2}+v^{2}\right)
$$

giving

$$
\begin{equation*}
v=\sqrt{\mathrm{v}_{r}^{2}+\mathrm{v}_{\varphi}^{2}+2 e V / m} \tag{6}
\end{equation*}
$$

Evaluating the constant C in (3) at both cylinder surfaces for the critical situation we have

$$
m \mathrm{v}_{\varphi} a-\frac{1}{2} e B_{c} a^{2}=m \mathrm{v} b-\frac{1}{2} e B_{c} b^{2} .
$$

Insertion of the value (6) for the velocity v yields the critical field

$$
B_{c}=\frac{2 m\left(v b-v_{\varphi} a\right)}{e\left(b^{2}-a^{2}\right)}=\underline{\underline{\frac{e\left(b^{2}-a^{2}\right)}{2}}\left[\sqrt{v_{r}^{2}+v_{\varphi}^{2}+2 e V / m}-v_{\varphi} a / b\right]} .
$$

Solution Problem 3

a) With the centre of the earth as origin, let the centre of mass C be located at \vec{l}. The distance l is determined by

$$
M l=M_{m}(L-l),
$$

which gives

$$
\begin{equation*}
l=\frac{M_{m}}{M+M_{m}} L=\underline{\underline{4.63 \cdot 10^{6} \mathrm{~m}}} \tag{1}
\end{equation*}
$$

less than R, and thus inside the earth.
The centrifugal force must balance the gravitational attraction between the moon and the earth:

$$
M \omega^{2} l=G \frac{M M_{m}}{L^{2}},
$$

which gives

$$
\begin{equation*}
\omega=\sqrt{\frac{G M_{m}}{L^{2} l}}=\underline{\underline{\sqrt{\frac{G\left(M+M_{m}\right)}{L^{3}}}}}=\underline{\underline{2.67 \cdot 10^{-6} \mathrm{~s}^{-1}}} . \tag{2}
\end{equation*}
$$

(This corresponds to a period $2 \pi / \omega=27.2$ days.) We have used (1) to eliminate l.
b) The potential energy of the mass point m consists of three contributions:
(1) Potential energy because of rotation (in the rotating frame of reference, see the problem text),

$$
-\frac{1}{2} m \omega^{2} r_{1}^{2}
$$

where \vec{r}_{1} is the distance from C. This corresponds to the centrifugal force $m \omega^{2} r_{1}$, directed outwards from C.
(2) Gravitational attraction to the earth,

$$
-G \frac{m M}{r} .
$$

(3) Gravitational attraction to the moon,

$$
-G \frac{m M_{m}}{r_{m}},
$$

where \vec{r}_{m} is the distance from the moon.

Describing the position of m by polar coordinates r, φ in the plane orthogonal to the axis of rotation (see figure), we have

$$
\vec{r}_{1}^{2}=(\vec{r}-\vec{l})^{2}=r^{2}-2 r l \cos \varphi+l^{2} .
$$

Adding the three potential energy contributions, we obtain

$$
\begin{equation*}
V(\vec{r})=-\frac{1}{2} m \omega^{2}\left(r^{2}-2 r l \cos \varphi+l^{2}\right)-G \frac{m M}{r}-G \frac{m M_{m}}{|\vec{L}-\vec{r}|} \tag{3}
\end{equation*}
$$

Here l is given by (1) and

$$
\left|\vec{r}_{m}\right|=\sqrt{(\vec{L}-\vec{r})^{2}}=\sqrt{L^{2}-2 \vec{L} \vec{r}+r^{2}}=L \sqrt{1+(r / L)^{2}-2(r / L) \cos \varphi},
$$

c) Since the ratio $r / L=a$ is very small, we may use the expansion

$$
\frac{1}{\sqrt{1+a^{2}-2 a \cos \varphi}}=1+a \cos \varphi+a^{2} \frac{1}{2}\left(3 \cos ^{2} \varphi-1\right)
$$

Insertion into the expression (3) for the potential energy gives

$$
\begin{equation*}
V(r, \varphi) / m=-\frac{1}{2} \omega^{2} r^{2}-\frac{G M}{r}-\frac{G M_{m} r^{2}}{2 L^{3}}\left(3 \cos ^{2} \varphi-1\right), \tag{4}
\end{equation*}
$$

apart from a constant. We have used that

$$
m \omega^{2} r l \cos \varphi-G m M_{m} \frac{r}{L^{2}} \cos \varphi=0
$$

when the value of ω^{2}, equation (2), is inserted.
The form of the liquid surface is such that a mass point has the same energy V everywhere on the surface. (This is equivalent to requiring no net force tangential to the surface.) Putting

$$
r=R+h,
$$

where the tide h is much smaller than R , we have approximately

$$
\frac{1}{r}=\frac{1}{R+h}=\frac{1}{R} \frac{1}{1+(h / R)} \cong \frac{1}{R}\left(1-\frac{h}{R}\right)=\frac{1}{R}-\frac{h}{R^{2}},
$$

as well as

$$
r^{2}=R^{2}+2 R h+h^{2} \cong R^{2}+2 R h .
$$

Inserting this, and the value (2) of ω into (4), we have

$$
\begin{equation*}
V(r, \varphi) / m=-\frac{G\left(M+M_{m}\right) R}{L^{3}} h+\frac{G M}{R^{2}} h-\frac{G M_{m} r^{2}}{2 L^{3}}\left(3 \cos ^{2} \varphi-1\right), \tag{5}
\end{equation*}
$$

again apart from a constant.
The magnitude of the first term on the right-hand side of (5) is a factor

$$
\frac{\left(M+M_{m}\right)}{M}\left(\frac{R}{L}\right)^{3} \cong 10^{-5}
$$

smaller than the second term, thus negligible. If the remaining two terms in equation (5) compensate each other, i.e.

$$
h=\frac{M_{m} r^{2} R^{2}}{2 M L^{3}}\left(3 \cos ^{2} \varphi-1\right),
$$

then the mass point m has the same energy everywhere on the surface. Here r^{2} can safely be approximated by R^{2}, giving the tidal bulge

$$
h=\frac{M_{m} R^{4}}{2 M L^{3}}\left(3 \cos ^{2} \varphi-1\right) .
$$

The largest value $h_{\text {max }}=M_{m} R^{4} / M L^{3}$ occurs for $\varphi=0$ or π, in the direction of the moon or in the opposite direction, while the smallest value $h_{\min }=-M_{m} R^{4} / 2 M L^{3}$ corresponds to $\varphi=\pi / 2$ or $3 \pi / 2$. The difference between high tide and low tide is therefore

$$
h_{\max }-h_{\min }=\frac{3 M_{m} R^{4}}{2 M L^{3}}=\underline{\underline{0.54 \mathrm{~m}}}
$$

(The values for high and low tide are determined up to an additive constant, but the difference is of course independent of this.)

